Marine & Offshore | Industry | Power & Energy

PRODUCT CATALOGUE

Reliable Industrial Controls Since 1902

Introduction	rius
Control Valves	NTROLS
Self-Acting Controls	3
Electronic and Electric Controls	4
Building Automation	5
Pneumatic Controls	6
	7
Accessories	8
Quick Choice	9
Applications	10

SECTION 1

COMPANY PROFILE

We strive to be a world class advisor and

provider of industrial controls

CONTENT

Who we are	4
What guides us	6
Our quality	8
Standards & Certificates	10
Markets served	12
Our products	14
Our clients	16
Sales channels	18

For more than a century we have developed our knowledge about monitoring, controlling and regulating heat, cooling and ventilation within offshore, marine, industry, building and utility applications. Understandably, the products and the technology have gone through a dynamic development, and today we offer an up-to-date product range to match our clients' need for reliable, economic and user-friendly solutions. Clorius Controls continues to maintain the highest standards for materials and workmanship and our work force remains committed to carefully upholding the principles of quality and integrity that define the company. We attribute our success to the unique combination of hard work, industry insights, dedication to quality, and in large part, to our culture and values.

Establishment of our sales office in Singapore and relocation of our HQ near Copenhagen Airport

Establishment of our sales representation in India

Relocation of our production facilities, from Denmark to Poland

Establishment of our sales office in Russia (with our sister company Broen)

2004

Establishment of our sales office in China

The company changes its name from Odin Controls Systems ApS to Clorius Controls A/S

1998

The ownership passes to Aalberts Industries

The company is sold to Raab Karcher Energie Servies GmbH

1983

Introduction of magnetic conductive energy meter

1974

Aquired by ISS Group

1953

Our first exports take place

Foundation of the company as Industri Aktieselskab Clorius, by two Danish brothers, Axel and Odin Clorius. Invention of Clorius' first self-acting controller

Winning takes **TALENT** —

to repeat takes character

What guides us

At Clorius Controls we believe that success comes from teamwork. We apply all our company resources at the service of our customers and partners, from our production facilities, experience and network of experts, to our knowledge, energy and innovative spirit of our people.

MISSION The Reason For Our Existence

"Our mission is to build a mutually beneficial partnership with our customers by developing, manufacturing, marketing and servicing products for temperature and pressure control, and regulation of heating and cooling circuits with water, steam or oil as the heat-transferring medium".

VISION Where We Want To Go

"We strive to be a world class advisor and provider of industrial controls."

VALUES What We Believe In

FLEXIBILITY — Global Vision, Local Agility

CUSTOMER FOCUS — A fundamental ingredient to our success

RELIABILITY — Keeping our promises

QUALITY — In our products and excellence in our processes

Our people are key to our **SUCCESS** -Experienced, diverse and multi-skilled

Our quality

Since our founding in 1902, quality has been of utmost priority in our production and operations. At Clorius Controls each and every associate knows and lives the purpose of our organization. Providing innovative, industry-leading valves and associated products for controlling the flow and pressure of industrial liquids and steam. We largely accomplish this through a constant commitment to quality and efficiency.

The key values that differentiate Clorius Controls is our continuous collaboration with customers, vendors and staff to design and produce the best possible products. We eagerly partner with our customers to develop innovative products and new configurations. We appreciate the recommendations of vendors for better components and improved materials. In exchange, you can count on us for responsive engineering and quick, accommodating production.

For our customer this means:

- Unique and robust design
- Precise regulation
- High reliability
- Low maintenance cost
- Longer life-cycle
- Complete documentation

Our dedication to quality has never been greater.

Standards & Certificates

Clorius Controls routinely manufactures and tests its products to the most demanding customer specifications and recognized national and international industry standards. A long-standing tradition of delivering to the shipbuilding industry means that products delivered by Clorius Controls A/S are developed in order to match the high requirements set by the maritime industry. Since 1993 we have been ISO 9001 certified for development, manufacturing, sales and servicing of controls for buildings, industrial and marine applications.

Control valves from Clorius Controls can be delivered with test certificates from all approved Ship Classification Societies:

ANSI, DIN, JIS

Likewise, we can also deliver valves with certificates in accordance to:

- EN 10.204 / 2.1
- EN 10.204 / 2.2
- EN 10.204 / 3.1

Furthermore, we conduct:

- Inspection and test plan
- Pressure and leakage test

Segments served

Clorius Controls' products control the flow and pressure of liquids and steam throughout marine and industrial process industries. These include end-users and OEMs in the following segments.

- Marine & Offshore
- Oil & Gas
- Power generation
- Chemical
- Pulp & Paper
- Water treatment
- Food & Beverage
- Renewable energy
- Building & Construction
- District heating
- HVAC
- Food processing
- Refineries
- Boiler and heat exchangers
- Minerals
- Petrochemical
- Agriculture
- Textiles

Our products

Clorius Controls continually aims to develop our product poftfolio by identifying the needs of the market and providing products and solutions of uncompromised quality. Our product range is divided into 5 different sections, offering an extensive range of equipment for monitoring and control of heating, cooling and ventilation systems.

- Electric Control Valves
- Pneumatic Control Valves
- Self-acting temperature controls
- Self-acting pressure controls
- Controlling & Monitoring

Clorius valves are the preferred choice of the maritime industries, being installed in more than 1500 vessels within the last five years.

Simple, reliable and durable.

For a full list of products, do not hesitate to request a copy of our latest product catalog by contacting us or visiting our website.

Our clients

We have had the good fortune of being involved with a large number of strong global companies. Our clients are our starting point. They drive everything we do and we work collaboratively with them to achieve results they can measure. Our size enables our specialists to work closely together to develop tailor-made solutions, that meet our clients' evolving needs. Here are some clients we have recently added to our growing list of partnerships.

- Alfa Laval
- Alstom
- BASF
- BWSC
- 🛛 Doosan
- Flowserve
- Gazprom
- Guangzhou Shipbuilding International Cp., Ltd
- Hi Air Korea
- Hyundai
- Jinling Shipyard
- Johnson Controls
- Maersk
- MAN Diesel & Turbo
- Saacke
- Semco
- Shanghai Shipyard Co., Ltd.
- Shanghai Waigaoqiao Shipbuilding Co., Ltd.
- Thermax
- Yangzijiang Shipbuilding Co., Ltd.
- Zheijing Ouhua Shipbuilding Co., Ltd.

" Clorius Controls has been a trusted partner for many years, and their equipment has been included in the auxiliary systems for our two-stroke diesel engines during the last 30 years. Furthermore, their service and equipment have been an appreciated part in our systems, at our R&D center".

" At the beginning of 2013, a new internal cooling water system for our two-stroke diesel engines was developed and was introduced at the end of 2013. The new developed cooling water system, the LDCL system, required a special valve design with an extremely low leakage rate between two ports (Control Valve Leakage Classification Class IV). Also provided the significant vibration level from having the valve mounted directly on a diesel engine, robustness was a critical design factor. Clorius Controls took on the project and developed a three-way valve according to all requirements, which was tested with great success and to our full satisfaction".

Ole Skeltved Head of Marine Installation Department MAN Diesel & Turbo

Sales channels

Our sales network is there for you in more than 50 countries. Thanks to our sales representation in China, Russia, Singapore and Poland, as well as our broad network of distributors, we are available whenever our products or services are required.

HEADQUARTERS

Clorius Controls A/S - DENMARK Kajakvej 4 DK - 2770 Kastrup Tel.: +45 77 3<u>2 31 30</u> Email: mail@cloriuscontrols.com

SALES REPRESENTATION

Clorius Controls A/S - CHINA Room 1910-1911, Unicom International Tower, No. 547 West Tian Mu Road Shanghai 200070 P.R. China Tel.: +86 21 33 030 279 // +86 21 33 035 279

SALES REPRESENTATION

Cloirus Controls A/S - SINGAPORE The Metropolis Tower 7 11 North Buena Vista Drive, UNIT #08-09 138589 Singapore E-mail: mail@cloriuscontros.com

SALES REPRESENTATION BROEN Ltd - RUSSIA (sister company) 8-ya Tekstilschikov Street 11/2 109129 Moscow Russia Tel.: +7 495 228 1150 ext. 11-24

SALES REPRESENTATION BROEN SA - POLAND (sister company) ul. Pieszycka 10 58-200 Dzierzoniów Poland Tel.: +48 74 832 54 00

Clorius Controls A/S - POLAND Dzierzionów Poland

Kajakvej 4 DK-2770 Kastrup Denmark

Phone: +45 77 32 31 30 E-mail: mail@cloriuscontrols.com

Reliable Industrial Controls Since 1902

SECTION 2

- · Nominal pressure PN 16
- Regulating capability $\frac{k_{VS}}{k_{Vr}}$ > 25
- Single seated and tight closing
- Quadratic characteristic

Applications

Regulating valves type L1S are designed for regulating low, medium and high pressure hot water, steam and lubricating oils.

The valves are installed combined with temperature or pressure differential regulators in control systems for heating of domestic premises, district heating, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of gun metal RG 5. The thread for the actuator connection is G1B ISO 228.

The valves are single seated and designed for tight closure. The leakage rate is less than 0.05% of the

full flow (according to VDI/VDE 2174). To obtain an approximate, linear transfer performance, for use in systems with standard existing heat exchangers and pumps, the valve characteristic is made quadratic.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical Data

Ma

Materials:	
- valve body	Gun metal RG 5
- components	Stainless steel
Nominal pressure	PN 16
Seating	Single seated
Valve characteristic	Quadratic
Leakage	\leq 0.05% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Internal connection	
threads	ISO 7/1

Specifications									
Туре	Connection threads	DN mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg			
15/6 L1S	Rp ½	15	6	0.45	6	0.7			
15/9 L1S	Rp ½	15	9	0.95	6	0.7			
15/12 L1S	Rp ½	15	12	1.7	6	0.7			
15 L1S	Rp ½	15	15	2.75	6	0.7			
20 L1S	Rp ¾	20	20	5.00	7	0.8			

Subject to change without notice.

2-way Control Valves type L1S Gun Metal, PN 16, DN 15/6 – 20 mm

Definition of kys-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horizontal spindles. For valve temperatures of max. 170°C, the thermostat/ actuator can be fitted below or above the valve. For valve temperatures above 170°C, a cooling unit of type KS 4 has to be applied with connection downwards.

Strainer

It is recommended to use a strainer in front of the regulating valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Subject to change without notice.

2-way Control Valves type L1SB Gun Metal, PN 16, DN 15 – 32 mm

2.2.04-I GB-1

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{rs}} > 25$
- Single seated, balanced
- Quadratic characteristic

Applications

Control valves type L1SB are designed for regulation of hot water, steam and lubricating liquids.

The valves are installed combined with our self-acting thermostats, pressure differential regulators or electric valve actuators for regulation in central heating plants, industrial plants, industrial processes or marine installations.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of gun metal RG 5.

The thread for the actuator connection is G1B ISO 228. The valve is single seated, balanced. The leakage rate is less than 0.05% of the full flow (according to VDI/ VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats the valves will close at rising temperatures. In connection with our electric valve actuators the valves will either close or open depending on the application.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials: - valve body - components Nominal pressure Seating Valve characteristic Leakage Temperature range

Internal connection

Mounting

threads

Gun metal RG 5 Stainless steel PN 16 Single seated Quadratic $\leq 0.05\%$ of k_{vs} See pressure/ temperature diagram See page 2

ISO 7/1

Specifications									
Туре	Connection threads	DN mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg			
15 L1SB	Rp ½	15	15	2.75	6	1.0			
20 L1SB	Rp ¾	20	20	5	6.5	1.3			
25 L1SB	Rp 1	25	25	7.5	7	1.6			
32 L1SB	Rp 1¼	32	32	12.5	8	2.9			

Subject to change without notice.

2-way Control Valves type L1SB Gun Metal, PN 16, DN 15 – 32 mm

Definition of kys-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS-4 has to be applied. It must then be installed with electric actuator/ thermostat downwards.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensioning

Turne	Water / Steam		Thermostats		Valve actuators	Pressure differential controlle		
туре			V2	V4	VB/VBA	TD66-4	TD66-8	
	Water:	$\Delta p_{L} \& max. p_{1}$	bar	9.5			16	16
DN 15	Steam:	$\Delta \mathbf{p}_{L} \& \mathbf{max.} \mathbf{p}_{1}$	bar	9		16		
DN 20	Water:	$\Delta p_L^{} \& max. p_1^{}$	bar	9				
	Steam:	$\Delta p_L^{} \& max. p_1^{}$	bar	8				
DN 25	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	8				
DN 25	Steam:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	7				
DN 22	Water:	$\Delta \mathbf{p}_{L} \& \mathbf{max.} \mathbf{p}_{1}$	bar	7				
DN 32	Steam:	$\Delta \mathbf{p}_1 \& \mathbf{max}. \mathbf{p}_1$	bar	6				

 $p_1 = absolute pressure$

Subject to change without notice.

Balanced 2-way Control Valves type L1SBR Gun Metal, PN 16, DN 15 – 32 mm, Reverse acting

2.2.04.01-D

GB-1

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vs}} > 25$
- Single seated, balanced
- Quadratic characteristic
- Pressure balanced control valve

Applications

Balanced control valves type L1SBR are designed for regulation of cooling water, hot water, steam and lubricating liquids. Balanced valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a standard single seated valve, and where the leakage rate for a double-seated valve is unacceptable.

The valves are installed combined with our self-acting thermostats, pressure differential regulators or electric valve actuators for regulation in central heating plants, industrial plants, industrial processes or marine installations - especially in control systems for cooling.

The reverse acting valves are held in closed position by means of a built-in spring.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of gun metal RG 5.

The thread for the actuator connection is G1B ISO 228. The valve is single seated, balanced. The leakage rate is less than 0.05% of the full flow (according to VDI/ VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats the valves will open at rising temperatures. In connection with our valve motors the valves will either close or open depending on the application.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials:
 valve body
 components
Nominal pressure
Seating
Valve characteristic
Leakage
Temperature range

Mounting Internal connection threads Gun metal RG 5 Stainless steel PN 16 Single seated Quadratic $\leq 0.05\%$ of k_{vs} See pressure/ temperature diagram See page 2

ISO 7/1

Specifications									
Туре	Connection threads	DN mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg			
15 L1SBR	Rp ½	15	15	2,75	6	1.0			
20 L1SBR	Rp ¾	20	20	5	6.5	1.3			
25 L1SBR	Rp 1	25	25	7.5	7	1.6			
32 L1SBR	Rp 1¼	32	32	12.5	8	2.9			

Subject to change without notice.

Balanced 2-way Control Valves type L1SBR Gun Metal, PN 16, DN 15 – 32 mm, Reverse acting

2.2.04.01-D

GB-2

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

For media temperatures of max. 170°C, the thermostat/actuator can be fitted below or above the valve. For valve temperatures above 170°C, a cooling unit of type KS 4 has to be applied and the thermostat/actuator must be fitted below the valve.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensioning

Tune	Water / Steam		Thermostats		Valve motors	Pressure differential controllers		
туре			V2	V4	VB/VBA	TD66-4	TD66-8	
DN 15	Water:	$\Delta p_L \& max. p_1$	bar	9		16 16	16	16
DN 15	Steam:	$\Delta p_L \& max. p_1$	bar	8]			
DN 20	Water:	$\Delta p_L \& max. p_1$	bar	7.5	10			
DN 20	Steam:	$\Delta \mathbf{p}_{L}$ & max. \mathbf{p}_{1}	bar	6.5				
DN 25	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	6	10			
DN 25	Steam:	$\Delta p_L \& max. p_1$	bar	5				
DN 22	Water:	$\Delta p_L \& max. p_1$	bar	7				
DN 32	Steam:	$\Delta p_L \& max. p_1$	bar	6				

Subject to change without notice.

2-way Control Valves type L2S Gun Metal, PN 16, DN 40 – 50 mm

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25
- · Double seated
- Linear characteristic

Applications

Control valves type L2S are designed for regulation of hot water and lubricating oils.

The valves are installed combined with one of our self-acting thermostats, pressure differential regulators or electric valve actuators for regulation in central heating plants, industrial plants, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

- The valve body, seats and cone are made of gun metal RG 5. The stem is made of brass.
- The thread for the actuator connection is G1B ISO 228.

The valves are double seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electric actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

1	
10	-

Technical Data

Materials:	
 valve body 	Gun metal RG 5
- components	Gun metal RG 5
- stem	Brass
Nominal pressure	PN 16
Seating	Double seated
Valve characteristic	Linear
Leakage	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Internal connection	
threads	ISO 7/1

Specific	Specifications											
Туре	Connection threads	DN mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg						
40 L2S	Rp 1½	40	40	20	8	2.9						
50 L2S	Rp 2	50	50	30	9	3.8						

Subject to change without notice.

2-way Control Valves type L2S Gun Metal, PN 16, DN 40 – 50 mm

Definition of kys-value

The $k_{vs}\text{-value}$ is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horizontal spindles. For valve temperatures of max. 170° C, the thermostat/actuator can be fitted below or above the valve. For valve temperatures above 170° C, a cooling unit of type KS 4 has to be applied with connection downwards.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension Sketch							
H1 H							
Туре	L mm	H mm	H1 mm				
40 L2S	129	118	68				
50 L2S	153	122	71				

Subject to change without notice.

2-way Control Valves type L2F Gun metal, PN 10, DN 65 – 150 mm

Characteristics

- Nominal pressure PN 10
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vs}} > 25$
- Two single seats

Applications

Control valves type L2F are designed for regulating low, medium and high pressure hot water - and cold and hot sea water. The valves are used in connection with one of our temperature regulators in control systems for industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - valve body, seats, cone and spindle - are made of sea water resistant materials with connection flanges drilled according to DIN 86021.

The connection thread for the actuator is G1B.

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port Numbering

The ports of valves type L2F are marked with the figures 1 and 2.

The letters in parentheses refer to the corresponding internationally adapted designations.

Port 2(A) closes at load on spindle.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures.

The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

2 (A)	4	
2 (A)		1 (AB)
5	-7.0 CBAR	
)	0	•
)		
2		

Technical Data

Materials: - Valve body, seats and cone - Spindle Nominal pressure Seating Valve characteristic Almost linear Leakage Temperature range See pressure/tem-Mounting

Flanges drilled according to

CuSn5Zn5Pb5-C W.no. 1.4436 PN 10 2 balanced seats $\leq 0.5\%$ of k_{vs} perature diagram With spindle vertical

DIN 86021

Specifica _{Type}	tion Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
65 L2F	65	65	50	10.5	27
80 L2F	80	80	80	11	36
100 L2F	100	100	125	13	62
125 L2F	125	125	215	18	102
150 L2F	150	150	310	21	145

Subject to changes without notice.

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
65 L2F	240	150	175	120	185	20	145	18x(4)
80 L2F	260	160	185	125	200	22	160	18x(8)
100 L2F	350	205	195	145	220	22	180	18x(8)
125 L2F	400	275	245	180	250	24	210	18x(8)
150 L2F	480	305	280	189	285	24	240	22x(8)

2-way Control Valves type L2FM-T Gun metal, PN 10, DN 150 – 300 / PN 6, DN 350 – 600 mm

2.2.05.03-A

GB-1

Characteristics

- Nominal pressure DN 150-300 mm: PN 10, max. 100°C (option 120°C) DN 350-600 mm: PN 6, max. 100°C (option 120°C)
- Slide in Gun metal

Applications

Control valve type L2FM-T is a three-way control valve with blocked port making a two-way control valve. The slide for quarter turn operation designed for regulating of sea water.

The valves are designed for use in conjunction with industrial processes, marine installations with large water quantities.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{G(m^{3} / h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^{3} / h)}{k_{vs}}\right)^{2}$$

Design

The valve body is made of gun metal and the valve slide is made of alu bronze. The valve flanges are drilled according to EN 1092-2 or ANSI Class 150.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one extreme position by turning the spindle, connection A-AB is kept fully open. In the other extreme position connection the valve is fully closed. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Technical data

Materials:	
- valve body	Gun metal RG5 CuSn5Z5Pb5-C
- Slide	CuAl10Fe5Ni5
- O-ring	NBR 70A
Nominal pressure:	
- DN 150-300	PN 10
- DN 350-600	PN 6
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Max. 100°C
	(option 120°C)
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/6
Counter flanges	ANSI Class 150
(suggested)	DIN 2632 – PN 10
	DIN 2633 – PN 6
Max. pressure ∆p _L , a	gainst which the
control can close:	
- DN 150-300	10 bar
- DN 350-600	6 bar

Subject to change without notice.

Type Flange connection DN in mm k _{vs} -value m³/h Torque Nm Weig kg 150 L2FM-T 150 425 135 84 200 L2FM-T 200 1100 330 153 250 L2FM-T 250 1800 450 215 300 L2FM-T 300 2450 700 277 350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579	Specificatio	ns			
150 L2FM-T 150 425 135 84 200 L2FM-T 200 1100 330 153 250 L2FM-T 250 1800 450 215 300 L2FM-T 300 2450 700 277 350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579 500 L2FM-T 500 500 1450 744	Туре	Flange connection DN in mm	k_{vs}-value m³/h	Torque Nm	Weight kg
200 L2FM-T 200 1100 330 153 250 L2FM-T 250 1800 450 215 300 L2FM-T 300 2450 700 277 350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579	150 L2FM-T	150	425	135	84
250 L2FM-T 250 1800 450 215 300 L2FM-T 300 2450 700 277 350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579	200 L2FM-T	200	1100	330	153
300 L2FM-T 300 2450 700 277 350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579 500 L2FM-T 500 500 1450 579	250 L2FM-T	250	1800	450	215
350 L2FM-T 350 3350 780 370 400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579	300 L2FM-T	300	2450	700	277
400 L2FM-T 400 3850 880 459 450 L2FM-T 450 4300 1250 579	350 L2FM-T	350	3350	780	370
450 L2FM-T 450 4300 1250 579	400 L2FM-T	400	3850	880	459
500 LOENT 500 5050 4450 744	450 L2FM-T	450	4300	1250	579
500 L2FM-1 500 5050 1450 744	500 L2FM-T	500	5050	1450	744
600 L2FM-T 600 6020 1750 109	600 L2FM-T	600	6020	1750	1090

2-way Control Valves type L2FM-T Gun metal, PN 10, DN 150 – 300 / PN 6, DN 350 – 600 mm

GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A and AB.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions

							E	EN 10	92-2	AN.	SI Cla	ss 150
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)
150 L2FM-T	438	250	196	139	250	276	290	240	23x (8)	280	241	22x (8)
200 L2FM-T	530	306	236	175	21	361	340	295	23x(12)	343	299	23x(8)
250 L2FM-T	592	340	273	205	23	361	400	355	28x(12)	407	362	26x(12)
300 L2FM-T	649	371	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)
350 L2FM-T	717	403	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)
400 L2FM-T	770	430	375	285	26	361	565	515	28x(16)	597	540	29x(16)
450 L2FM-T	820	457	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)
500 L2FM-T	900	499	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)
600 L2FM-T	1000	553	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)

Subject to change without notice.

2-way Control Valves type L2SR, Gun metal PN 16, DN 40 – 50 mm, 2 seats, Reverse acting

2.2.06-L GB-1

Characteristics

- Nominel pressure PN 16
- Regulating capability $\frac{\kappa_{VS}}{k_{VT}}$ <u>k_{vs}</u> > 25
- Reverse acting (normally closed)
- · For cooling water and lubricants
- Linear characteristic

Applications

Valves type L2SR are mainly intended for control of cooling water, sea water and lubricating liquids.

The valves are used in conjunction with temperature- or pressure differential regulators in industrial processes or marine installations - especially in control systems for cooling.

As the reverse acting valves are held in closed position by means of a builtin spring, the max. differential pressure, Δp_{i} , against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

Please find the below max. allowable values of Δp_1 as well as the max. allowable inlet pressures for opening the valves, p_{1max} , for various actuator forces.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" datasheet no. 9.0.00.

Design

The valve body, seats and cone - are made of gun metal RG 5 and the stem of stainless steel - the valve body with threaded ends according to ISO 7-1. The thread for the actuator connection is G1B.

The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality Assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function – Reverse Acting

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with thermostats or electric valve actuators the valves act as "cooling" valves, i.e. they open at rising temperatures.

Technical Data

Materials:	
 Valve, body, 	
seats and cone	Gun metal RG 5
	W.No. 2.1086
- Stem	Stainless Steel
	W.No. 1.4436
Nominal pressure	PN 16
Seating	Double seated
Flow characteristic	Linear
Regulating capability	$\frac{k_{vs}}{k_{vr}}$ > 25
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/
	temperature
	diagram
Mounting	See page 2
Connection threads	ISO 7-1

Specifications										
Туре	$\begin{array}{c} \textbf{Connection} \\ \textbf{R}_{_{P}} \end{array}$	Opening dia. mm	k_{vs}-value m³/h	Rated Travel mm	Max. ∆p _∟ bar	Actuator Force N	Corresp. p _{1max} bar	Weight kg		
40 L2SR	1 1⁄2"	40	20.00	8	2.7	400	16.0	3.0		
50 L2SR	2"	50	30.00	9	1.8	400	16.0	4.0		

Subject to change without notice.

2-way Control Valves type L2SR, Gun metal PN 16, DN 40 – 50 mm, 2 seats, Reverse acting

2.2.06-L GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horisontal spindles. For valve temperatures of max. 170°C, the thermostat/actuator can be fitted below or above the valve. For valve temperatures above 170°C, a cooling unit of type KS4 has to be applied with connection downwards.

Strainer

It is recommended to use a strainer in front of the regulating valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Subject to change without notice.

3-way Control Valves type L3S Gun metal, PN 10, DN 15 – 50 mm

Characteristics

- Nominal pressure PN 10
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Two single seats

Applications

Control valves type L3S are designed for regulating fresh water, cold and hot seawater and lubricating liquids.

The valves are used in conjunction with temperature regulators in control systems for heating of domestic premises, district heating, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - valve body, seats and cone - are made of sea-water resistant gun metal RG 5.

The valves are single seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Note: The design of the sizes DN 15 ($\frac{1}{2}$) and DN 20 ($\frac{3}{4}$) is different from the bigger ones.

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

Port numbering

The ports of valves type L3S are marked with the figures 1, 2 and 3.

The letters in parentheses refer to the corresponding internationally adapted designations.

Port 1(AB) common Port 2(A) closes at Port 3(B) opens at

common port always open closes at load on spindle opens at load on spindle

Function

Without an actuator being installed, connection 2-1 is fully open and connection 3-1 completely closed by means of a spring.

On increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection 3-1 is fully open and connection 2-1 completely closed.

Technical data

Materials:

threads

Valve body, seats and cone: Gun metal RG 5 Nominal pressure: PN 10 (max. 120°C option 200°C) Seating: Two single seats

	15-20 mm unbalanced
	25-50 mm balanced
Valve characteristic	Almost linear
Leakage rate	\leq 0.5% of k _{vs}
Way of operation	When spindle is
	actuated:
	Gate 1-2 closes
	Gate 1-3 opens
Mounting	See page 2
Internal connection	

ISO 7/1

Spec	ification						
Туре	Connection	DN	Opening	k _{vs} -value mixing valve	k _{vs} -value diverting valve	Lifting height	Weight
	threads	mm	mm	m³/h	m³/h	mm	kg
15 L3S	Rp ½	15	15	2.75	2.4	3	1
20 L3S	Rp ¾	20	20	5	4.3	4	1
25 L3S	Rp 1	25	25	7.5	6.4	4	4.4
32 L3S	Rp 1¼	32	32	12.5	10.7	6	4.4
40 L3S	Rp 11⁄2	40	40	20	17.2	6	8.3
50 L3S	Rp 2	50	50	30	25.8	8	7.7

Subject to changes without notice.

3-way Control Valves type L3S Gun metal, PN 10, DN 15 – 50 mm

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horisontal spindles. The thermo-stat/actuator can be fitted below or above the valve.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual Adjusting Device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Dimension sketch DN 15 - 20 mm DN 25 - 50 mm GIB

Туре	L mm	L1 mm	H mm	H1 mm
15 L3S	110	-	60	55
20 L3S	110	-	60	55
25 L3S	140	70	145	80
32 L3S	140	70	145	80
40 L3S	185	95	150	105
50 L3S	185	95	150	105

3-way Control Valves type L3F Gun metal, PN 10, DN 65 – 150 mm

Characteristics

- Nominal pressure PN 10
- Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{25}$ > 25
- Two single seats

Applications

Control valves type L3F are designed for regulating low, medium and high pressure hot water - and cold and hot sea water. The valves are used in connection with one of our temperature regulators in control systems for industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - valve body, seats, cone and spindle - are made of sea water resistant materials with connection flanges drilled according to DIN 86021.

The connection thread for the actuator is G1B.

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port Numbering

The ports of valves type L3F are marked with the figures 1, 2 and 3. The letters in parentheses refer to the corresponding internationally adapted designations.

Port 1(AB) cc Port 2(A) cla Port 3(B) op

common port always open closes at load on spindle opens at load on spindle

Function

Without an actuator being installed, connection 2-1 is fully open and connection 3-1 completely closed, by means of a spring. By increasing pressure on the spindle, the opening of the ports changes

proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection 3-1 is fully open and connection 2-1 completely closed.

Technical Data

CuSn5Zn5Pb5-C
W.no. 1.4436
PN 10
2 balanced seats
Almost linear
\leq 0.5% of k _{vs}
See pressure/tem-
perature diagram
With spindle vertical
DIN 86021

Specif	ication Flange connection DN in mm	Opening mm	Mixing valve k _{vs} -value m³/h	Diverting valve k _{vs} -value m³/h	Lifting height mm	Weight kg
65 L3F	65	65	50	43	10.5	22.5
80 L3F	80	80	80	69	11	40
100 L3F	100	100	125	108	13	55
125 L3F	125	125	215	185	18	91
150 L3F	150	150	310	267	21	131

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations. Free height above / below the valve must be minimum 645 mm for mounting and operation of the MT90 Marine motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
65 L3F	240	120	175	120	185	20	145	18x(4)
80 L3F	310	155	180	127	200	22	160	18x(8)
100 L3F	350	175	195	145	220	22	180	18x(8)
125 L3F	400	240	245	180	250	24	210	18x(8)
150 L3F	480	270	280	189	285	24	240	22x(8)

Clorius Controls A/S

3-way control valves type L3FA, Gun metal 2.2.09.01-A PN 10, DN 80 – 200 mm / PN 6, DN 300/250 – 300 mm GB-1

Characteristics

- Nominal pressure 80-200 mm: PN 10 max. 120°C 300/250-300 mm: PN 6 max. 120°C
- Regulating capability $\frac{k_{VS}}{k_{VS}} > 25$
- Two single seats
- For cooling and heating purposes
- Sea water resistant

Applications

Control valve type L3FA is designed for regulating of sea water.

The valves are used in conjunction with marine installations, e.g. cooling of main and auxiliary engines. Designed for use in conjunction with Clorius valve motor type AVM/F 234.

Dimensioning

For sizing of control valves up to DN 150 please see "Quick Choice" leaflet No. 9.0.00. For sizing of control valves bigger than DN 150 mm the following equation can be used:

$$k_{vs} = \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^3 / h)}{k_{vs}}\right)^2$$

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of gun metal and the valve flanges are drilled according to DIN 86021.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type L3FA are marked with the letters AB, A and B.

Port AB	common port always oper
Port A	closes at load on spindle
Port B	opens at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one outer position by draw on the spindle, connection A-AB is kept fully open and connection B-AB is fully closed.

In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally.

Technical data

NЛ	ate	ria	10
1 1 1	and	110	10

atchais	
- Valve body	Gun metal RG 5
	CuSn5Zn5Pb5-C
- Trim	Gun metal RG 5
	CuSn5Zn5Pb5-C
- Valve spindle	Stainless stee
	(W.no. 1.4436)

Nominal pressure

DN 80	-200 mm [.] PN	J 10 (max 120°C)
DN 300/2	250-300 mm: l	PN 6 (max. 120°C)
Seats	2 bala	inced single seats
Valve cha	aracteristic	Almost linear
Leakage		< 0.5%
Tempera	ture range	Max. 120°C
Mounting	l	See page 2
Flanges	Accord	ding to DIN 86021
Note !	Valve type	300/250 L3FA has
	outer mea	sures and flanges
	drilled as va	lve type 300 L3FA

Subject to change without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note:

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Free height above / below the valve must be minimum 400 mm for mounting and operation of the AVM234 See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Sp	ecifi	catio	ns

	-				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value ¹) m³/h	Lifting height mm	Weight kg
80 L3FA	80	80	80	11	40
100 L3FA	100	100	125	13	49
125 L3FA	125	125	215	18	80
150 L3FA	150	150	310	20	126
200/175 L3FA	200	200	425	22	195
200 L3FA	200	200	555	28	190
300/250 L3FA2	300	300	865	28	365
300 L3FA	300	300	1250	45	355

 $^{1)}$ The stated k_{vs} values apply for mixing valves. Diverting valves: 0.86 x (k_{vs} -values for mixing valves). $^{2)}$ Valve type 300/250 L3FA has outer measures and flanges drilled as type 300 L3FA.

Туре	L mm	L1 mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
80 L3FA	310	155	117	127	19	200	160	18x(8)
100 L3FA	350	175	132	141	19	220	180	18x(8)
125 L3FA	400	240	181	171	19	250	210	18x(8)
150 L3FA	480	270	216	189	19	285	240	22x(8)
200/175 L3FA	600	325	238	238	20	340	295	22x(8)
200 L3FA	600	325	238	238	20	340	295	22x(8)
300/250 L3FA ²⁾	850	450	305	305	25	445	400	22x(12)
300 L3FA	850	450	305	305	25	445	400	22x(12)

Subject to change without notice.

²⁾ Valve type 300/250 L3FA has outer measures and flanges drilled as type 300 L3FA.

3-way Control Valves type L3FM-T Gun metal, PN 10, DN 65 – 300 / PN 6, DN 350 – 600 mm

Characteristics

 Nominal pressure 65-300 L3FM-T: PN 10, max.100°C (option 120°C) 350-600 L3FM-T: PN 6, max. 100°C (option 120°C)

Slide in CuAl10Fe5Ni5

Applications

Control valve type L3FM-T is a three-way control valve with a slide for quarter turn operation designed for regulating of sea water.

The valves are designed for use in conjunction with valve motor type RCEL with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^3 / h)}{k_{vs}}\right)$$

Design

The valve body and the valve slide are made of gun metal.

The valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one extreme position by turning the spindle, connection A-AB is kept fully open and connection B-AB is fully closed. In the other extreme position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Technical data

Materials:

- Valve body	Gun metal RG 5 CuSn5Zn5Pb5-C
- Slide	CuAl10Fe5Ni5
- O-ring	NBR 70A
Nominal pressure:	
65-300 L3FM-T	PN 10
350-600 L3FM-T	PN 6
Valve characteristic	Almost linear

Max. 0.5%
Max. 100°C
(option 120°C)
See page 2
EN 1092-2
PN 6/10
ggested)
DIN 2632 – PN 6
DIN 2633 - PN 10
against which the
10 bar
6 bar

Specification	IS				
Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weight kg
65 L3FM-TR		Available	from December 2	016	
80 L3FM-TR		Available	e from Septeber 20	016	
100 L3FM-TR	100	175	220	52	41
125 L3FM-TR	125	245	330	98	58
150 L3FM-TR	150	395	425	135	71
200 L3FM-TR	200	800	1100	330	114
250 L3FM-TR	250	1500	2100	450	159
300 L3FM-TR	300	2000	2650	700	207
350 L3FM-TR	350	2530	3380	780	278
400 L3FM-TR	400	3050	3950	880	346
450 L3FM-TR	450	3680	4480	1250	433
500 L3FM-TR	500	4150	5250	1450	563
600 L3FM-TR	600	4800	6050	1750	816
700 L3FM-TR	700	5500	7000	2150	1150
800 L3FM-TR	800	6200	8000	2550	1400

¹⁾ k_{vs}-value for port A and B 50% open.

Further specification for ordering (e.g. 400 L3FM-T, AB-Right)

Subject to change without notice.

3-way Control Valves type L3FM-T Gun metal, PN 10, DN 65 – 300 / PN 6, DN 350 – 600 mm

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

Valve can be supplied in two different configurations, AB-Right and AB-Left. Please note that the supplied configuration is according to installation.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2

3-way Control Valves type L3FM-T Gun metal, PN 10, DN 65 – 300 / PN 6, DN 350 – 600 mm

Dimension	s																	
							E	EN 10	92-2	AN	SI Cla	ss 150	JIS	S B 22	210 5K	JIS B 2210 10K		
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)									
65 L3FM-TR									Availa	ble fror	n Decei	mber 2016						
80 L3FM-TR									Availab	ole fron	n Septe	mber 2016						
100 L3FM-TR	350	175	158	112	17	273	235	190	23x(8)	230	190,5	19x(8)	200	165	19x(8)	210	175	19x(8)
125 L3FM-TR	400	200	179	123	17	273	270	220	28x(8)	255	216	22x(8)	235	200	19x(8)	250	210	23x(8)
150 L3FM-TR	438	219	196	139	20	276	290	240	23x(8)	280	241	22x(8)	265	230	19x(8)	280	240	23x(8)
200 L3FM-TR	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)
250 L3FM-TR	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
300 L3FM-TR	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)
350 L3FM-TR	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)
400 L3FM-TR	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)
450 L3FM-TR	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)
500 L3FM-TR	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)
600 L3FM-TR	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)
700 L3FM-TR	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)
800 L3FM-TR	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

2.2.10-E

GB-3

3-WAY THERMOSTATIC VALVE TYPE L3FSI

BRONZE, DN 50 - 150 mm,

TYPICAL APPLICATIONS - MARINE/OFFSHORE/POWER GENERATION Engines - high and low temperature water, sea and fresh water.

Heat Recovery and Fresh Water Generators - water circuits

DIMENSIONING

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{\Omega(m^{3}/h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{\Omega(m^{3}/h)}{k_{vs}}\right)^{2}$$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DESIGN

The valve body is made of bronze. Low lead alloy Sizes: DN50, 65, 80 (C89833) Sizes: DN 100, 125, 150 (C83600) The valve flanges are drilled according to, EN1092-3 (ANSI flanges available on request).

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

SPECIFICATION	S		
Туре	Flange connection DN in mm	kvs-value m³ /h	Weight kg
50 L3FSI	50	53	12
65 L3FSI	65	82	25
80 L3FSI	80	86	31
100 L3FSI	100	173	53
125 L3FSI	125	285	67
150 L3FSI	150	389	89

Subject to changes without notice.

CHARACTERISTICS

- Nominal pressure DN 50-150 mm: PN 10,
- Temperature range 7 to 127 °C

APPLICATIONS

Thermostatic control valve type L3FSI is a three-way control valve unique due to its internal sensor technology. The thermostatic valve is ideal for controlling fluid temperature, in cooling and heat recovery systems, and other temperature controlling applications such as: compressors, industrial engines, marine, power generation, renewable energy among others.

3-WAY THERMOSTATIC VALVE TYPE L3FSI

BRONZE, DN 50 - 150 mm,

FUNCTION

The thermostatic valve uses the principle of expanding wax, which undergoes large expansion rates within a relatively narrow temperature range. The self-acting element activates a cone, which directs the flow. All Clorius thermostatic valves are factory set at predetermined temperatures: no further adjustments are necessary. A wide range of temperatures are available for water and oil temperature control applications.

When using in a diverting application, on start-up the total fluid flow is routed back to the main system. As fluid temperature rises to the control range, some fluid is diverted to the cooling system. As fluid temperature continues to increase, more flow is diverted. When the thermostat is in a fully stroked condition, all fluid flow is directed to the cooling system. Clorius thermostatic valves may also be used in mixing application.

In a mixing application, port B is the hot by-pass fluid inlet and port C the cold fluid inlet from the cooler. The flows mix and the thermostats adjusts to reach the setpoint temperature of the mixed output flow through port A (commen port).

TECHNICAL DATA

Materials: - Valve body Low lead alloy Temperature range Flanges	Bronze Sizes: DN50, 65, 80 (C89833) Sizes: DN 100, 125, 150 (C83600) 7 to 127 °C EN1092-3 (ANSI flanges available on request)
Recommended pressure drop	0,15 - 0,5 bar
Max. static pressure DN 50-150 Optional	10 bar Manual override

Nickel plated thermostatic elements Wheep holes

MOUNTING

The valve can be installed in all positions. No additional space required.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

PORT NUMBERING

Subject to changes without notice.

3-WAY THERMOSTATIC VALVE TYPE L3FSI 2.2.15-B

BRONZE, DN 50 - 150 mm,

SET POINT TEMPERATURES

DIMENSION	IS								
	Di	imensio	ons	Max. Width in mm		Flange EN 1092	drilling -3 in mm		Set Point temperature.
Tupo	Y	w	Z		Outer	Bolt	Dia. of holes x no.		deg. C.
туре	mm	mm	mm		diameter	circle	of holes		7
50 L3FSI	110	219	149	159	ø159	ø125	ø18 x 4		13
65 L3FSI	125	251	166	206	ø185	ø145	ø18 x 4		18
80 L3FSI	132	265	171	203	ø200	ø160	ø18 x 8		24
100 L3FSI	197	394	213	279	ø220	ø180	ø18 x 8		32
125 L3FSI	241	482	237	356	ø250	ø210	ø18 x 8		35
150 L3FSI	241	482	252	406	ø285	ø240	ø22 x 8		38
					Subjec	t to chan	ge without notice		41
									43
									46
DIMENSION 9	БКЕТС	ЭН							49
									54
									57
1773			172	1 23			673		66
	_		- JI		\sim		S.		68
	<u> </u>					i FO			71
B				В					74
									77
		L L L	Ľ					Z	79
Ę		Į.				7			82
	<u> </u>	17772		•		A			85
•Y	 W			-	Y		_		88
						V V			91
									96
									99
									104
									110
									116
									121
									127
									1

GB-3

2-way Control Valves type M1F Cast iron, PN 16, DN 15/4 – 50 mm

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 Single-seated, tightly closing
- Quadratic characteristic

Applications

Control valves type M1F are designed for regulating low, medium and high pressure hot water, steam and lubricating oils. The valves are used in conjunction with our temperature or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat and cone - are made of stainless steel. The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The thread for the actuator connection is G1B ISO 228. The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

Materials: - Valve body - Components - Bolts, nuts Nominal pressure Seating Valve characteristic Regulating capability Seat leakage Temperature range Mounting Flanged ends drilled according to

Counter flanges

Colour

Cast iron EN-GJS-400-15 Stainless steel 24 CrMo 4/A4 PN 16 Single-seated Quadratic $\frac{k_{vs}}{k_{vr}}$ > 25 \leq 0.05% of k_{vs} See diagram See page 2

EN 1092-2 PN 16 DIN 2633/BS 4504 Grev

Specifications

Specificatio	ons				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
15/4 M1F	15	4	0.20	6	3
15/6 M1F	15	6	0.45	6	3
15/9 M1F	15	9	0.95	6	3.1
15/12 M1F	15	12	1.70	6	3.1
15 M1F	15	15	2.75	6	3.1
20 M1F	20	20	5	6.5	4.2
25 M1F	25	25	7.50	7	5.5
32 M1F	32	32	12.50	8	8.1
40 M1F	40	40	20	9	9.7
50 M1F	50	50	30	10	14

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	Valve Motors

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Туре	L mm	H1 mm	H2 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
15/4 M1F	130	80	60	14	95	65	14 x (4)
15/6 M1F	130	80	60	14	95	65	14 x (4)
15/9 M1F	130	80	60	14	95	65	14 x (4)
15/12 M1F	130	80	60	14	95	65	14 x (4)
15 M1F	130	80	60	14	95	65	14 x (4)
20 M1F	150	85	65	16	105	75	14 x (4)
25 M1F	160	95	70	16	115	85	14 x (4)
32 M1F	180	105	75	18	140	100	18 x (4)
40 M1F	200	110	85	18	150	110	18 x (4)
50 M1F	230	125	95	20	165	125	18 x (4)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Balanced 2-way Control Valves type M1FBN Cast iron, PN 16, DN 15 – 80 mm

2.3.03.01-D

GB-1

Characteristics

- Nominal pressure PN 16
- Pressure balanced valve
- Regulating capability $\frac{k_{VS}}{k_{CC}} > 25$
- Single-seated, balanced
- Quadratic characteristic

Applications

Balanced control valves type M1FBN are designed for regulating hot water, steam and hot oil systems.

Balanced valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a standard single seated valve, and where the leakage rate for a double-seated valve is unacceptable.

The valves are used in conjunction with our temperature- or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Design

The valve components - spindle, seat, cone - are made of stainless steel.

The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The thread for the actuator connection is G1B ISO 228.

The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in open position by means of a spring. With force on the spindle the valve will close.

In connection with our thermostats or electric actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting double-seated valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Cast iron
EN-GJS-400-15
Stainless steel
24 CrMo 5/A4
PN 16
Single-seated
Quadratic
$\frac{k_{vs}}{k_{vr}}$ > 25

Leakage	\leq 0.05% of k _{vs}
Temperature range	See pressure/tem
	perature diagram
Flanges drilled	
according to	EN 1092-2 PN 16
	or ANSI B16.5
	Class 150
Colour	Grev

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS-4 has to be applied. It must then be installed with electric actuator/ thermostat downwards.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
15 M1FBN	15	15	4	7.5	4
20 M1FBN	20	20	6.3	7.5	5
25 M1FBN	25	25	10	9	6
32 M1FBN	32	32	16	10	9
40 M1FBN	40	40	25	11	13
50 M1FBN	50	50	35	11.5	16
65 M1FBN	65	65	58	14.5	23
80 M1FBN	80	80	80	16	38

Specifications

Subject to changes without notice.

Balanced 2-way Control Valves type M1FBN Cast iron, PN 16, DN 15 – 80 mm

2.3.03.01-D GB-2

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions	6						
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
15 M1FBN	130	101	80	95	14	65	14x(4)
20 M1FBN	150	107	85	105	16	75	14x(4)
25 M1FBN	160	112	70	115	16	85	14x(4)
32 M1FBN	180	122	75	140	18	100	18x(4)
40 M1FBN	200	125	85	150	19	110	18x(4)
50 M1FBN	230	140	95	165	19	125	18x(4)
65 M1FBN	290	154	110	185	19	145	18x(4)
80 M1FBN	310	164	115	200	19	160	19x(8)

Dimensioning

Туре		Water / Steam		1	hermostat	s	Valve a	ctuators	Pressure differ	ential controllers
Type		Water / Steam		V2	V4	V8	V / AV	VB / VBA	TD66-4	TD66-8
	Water:	∆p _L & max. p ₁	bar	10						
	Steam:	∆p _L & max. p ₁	bar	9						
	Water:	∆p _L & max. p ₁	bar	9						
20 IVI IFDIN	Steam:	∆p _L & max. p ₁	bar	8	16				16	
25 M1EDN	Water:	∆p _L & max. p ₁	bar	8	1 10					
20 IVITEDIN	Steam:	∆p _L & max. p ₁	bar	7]			16		
	Water:	∆p ₁ & max. p ₁	bar	7	1		16	6	ľ	
32 IVITEDIN	Steam:	$\Delta p_{L} \& max. p_{1}$	bar	6		16				16
	Water:	∆p ₁ & max. p ₁	bar	-	10	10			10	10
40 IVI IFBIN	Steam:	$\Delta p_{L} \& max. p_{1}$	bar	-	9				9	
	Water:	∆p _L & max. p ₁	bar	-	9				9	
SO IVITEDIN	Steam:	∆p _L & max. p ₁	bar	-	8]			8	
65 M1EDN	Water:	∆p _L & max. p ₁	bar	-	7	1		-	8	
	Steam:	∆p ₁ & max. p ₁	bar	-	6			-	7	
	Water:	Δp _L & max. p ₁	bar	-	5			-	5	
	Steam:	$\Delta p_{L} \& max. p_{1}$	bar	-	4	<u> </u>		-	4	

 $p_1 = absolute pressure$

Subject to changes without notice.

2-way Control Valves type M2F, Cast iron PN 16, DN 20 – 80 mm, 2 seats, Flanged ends

2.3.04-N GB-1

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k} > 25$
- Double-seated
- Adjustable seat interspace
- Quadratic characteristic

Applications

Control valves type M2F are designed for regulating hot water, steam and lubricating oil systems.

The double-seated valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a single-seated valve.

The valves are used in conjunction with our temperature- or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The thread for the actuator connection is G1B ISO 228.

The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used. The quadratic characteristic will not

cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials: - Valve body

- Components - Bolts, nuts Nominal pressure Seating Valve characteristic

Regulating capability $\frac{k_{vs}}{k}$

Leakage rate Temperature range

Mounting Flanges drilled according to Counter flanges Colour Cast iron EN-GJS-400-15 Stainless steel 24 CrMo 4/A4 PN 16 Double-seated Quadratic $\frac{k_{vs}}{k_{vr}} > 25$ $\leq 0.5\%$ of k_{vs} See pressure/temperature diagram See page 2

EN 1092-2 PN 16 DIN 2633/BS 4504 Grey

Specification							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg		
20 M2F	20	20	5	6.5	5		
25 M2F	25	25	7.5	7	6.5		
32 M2F	32	32	12.5	8	9		
40 M2F	40	40	20	9	11		
50 M2F	50	50	30	10	16		
65 M2F	65	65	50	11	21		
80 M2F	80	80	80	13	38		

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for

 170°C - 250°C
 KS-4
 All actuators

 250°C - 300°C
 KS-5
 Thermostats

 250°C - 300°C
 KS-6
 Valve Motors

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Туре	L mm	H1 mm	H2 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
20 M2F	150	85	70	16	105	75	14x(4)
25 M2F	160	95	77	16	115	85	14x(4)
32 M2F	180	105	82	18	140	100	19x(4)
40 M2F	200	110	92	19	150	110	19x(4)
50 M2F	230	125	102	19	165	125	19x(4)
65 M2F	290	135	120	19	185	145	19x(4)
80 M2F	310	145	130	19	200	160	19x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type M2F Cast iron, PN 16, DN 100 – 150 mm

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Double-seated

Applications

Control valves type M2F are designed for regulating hot water, steam and hot oil systems.

The valves are installed combined with temperature- or pressure-differential regulators in control systems for heating to domestic premises, district- and group heating schemes, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast iron GG 25 with flanges drilled according to EN 1092-2. The connection thread for the actuator connection is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical Data

Materials:	
- Valve body	Cast iron GG 25
- Components	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	Double-seated
Valve characteristic	Almost quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}} > 25$
Function	Closing with pres-
	sure on spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges drilled	
according to	EN 1092-2
Counter flanges	DIN 2633
Colour	Grey

Specification						
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg	
100 M2F	100	100	125	20	32	
125 M2F	125	125	215	20	50	
150 M2F	150	150	310	20	70	

Subject to changes without notice.

Definition of kys-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/thermostat downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling Unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension sketch

Dimensions							
Туре	L mm	H1 mm	H2 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
100 M2F	350	185	209	24	220	180	18x(8)
125 M2F	400	205	224	26	250	210	18x(8)
150 M2F	400	240	244	26	285	240	22x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type M2FA, Cast Iron PN 10, DN 200 mm / PN 6, DN 250 – 300 mm

2.3.05.01-B

Characteristics

- Nominal pressure 200 M2FA: PN 10 max. 120°C 250-300 M2FA: PN 6 max. 120°C
- Regulating capability $\frac{k_{VS}}{k_{Vr}} > 25$
- · Double seated

Applications

Regulating valve type M2FA is designed for regulating of hot water, steam and hot oil systems.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines. Is designed for use in conjunction with Clorius valve motor type AVM/AVF 234.

Dimensioning

For sizing of control valves the following equation can be used:

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of cast iron and the valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The valve cone is firmly connected with the motor spindle. The valve will close at rising temperatures. For cooling circuits a reverse acting valve can be used. The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical Data

Materials	
 Valve body 	Cast iron EN-GJS-400-15
- Trim	Gun metal RG 5
	CuSn5Zn5Pb5-C
 Valve spindle 	Stainless steel
	(W.no. 1.4436)
Nominal pressure	
200 M2FA:	PN 10 (max. 120°C)
250-300 M2FA:	PN 6 (max. 120°C)
Seating	double seated
Valve characteristi	c Almost linear
Leakage	≤ 0.5%
Temperature range	e See pressure/
	temperature diagram
Mounting	See page 2
Flanges	EN 1092-2 PN 10
Note !	Type 250 M2FA has outer
me	easures and flanges drilled
	as type 300 M2FA
Counter flanges (s	uggested)
200 M2FA:	DIN 2633 – PN 10/16
250-300 M2FA:	DIN 2632 – PN 10

Specifications								
Туре	Flange connection mm	Opening DN in mm	k_{vs}-value m³/h	Lifting height mm	Weight kg			
200 M2FA	200	200	555	28	160			
250 M2FA ¹⁾	300	300	865	28	306			
300 M2FA	300	300	1250	45	290			

¹⁾ Valve type 250 M2FA has outer measures and flanges drilled as type 300 M2FA.

Subject to change without notice.

GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves must always be mounted with vertical spindle, preferable with the motor connection over the valve. Besides, the valve should be mounted so that the valve motor is exposed to a minimum of moisture and unnecessary vibrations.

Free height above/below the valve must be minimum 400 mm for mounting and operating of the AVM/AVF 234 motor, see drawing.

Strainer

It is recommended to use a strainer in front of the regulating valve if the liquid contains suspended particles.

Subject to change without notice.

Туре	L	L1	н	H1	b	D (dia.)	k (dia.)	d mm dia.
	mm	mm	mm	mm	mm	mm	mm	(number)
200 M2FA	600	380	238	238	26	340	295	22 x (8)
250 M2FA ¹⁾	850	510	305	305	28	445	400	23 x (12)
300 M2FA	850	510	305	305	28	445	400	23 x (12)

¹⁾ Valve type 250 M2FA has outer measures and flanges drilled as type 300 M2FA.

2-way Control Valves type M2FR, Cast iron PN 16, DN 20 – 80 mm, 2 seats, Reverse acting

2.3.06-M GB-1

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 Reverse acting (normally closed)
- · For cooling systems or similar
- · Adjustable seats

Applications

Valves type M2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature or pressure differential regulators for controlling industrial processes or cooling systems.

As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, Δp_{I} , against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

The table below shows the max. allowable values of Δp_1 as well as the max. allowable inlet pressures for opening the valves, p_{1max} , for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The thread for the actuator connection is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical Data

Colour

Counter flanges

Materials:	
- Valve body	Cast iron
	EN-GJS-400-15
- Trim	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	Double seated
Flow characteristic	Quadratic
Regulating capability	$\frac{k_{\rm VS}}{k_{\rm Vr}}$ > 25
Function	Opening with
	pressure on
	spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges drilled	
according to	EN 1092-2

DIN 2633/BS 4504 Grey

Subject to changes without notice.

Specific	ations							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _∟ bar	Actuat. force	Corresp. p _{1max} bar	Weight kg
20 M2FR	20	20	5	6.5	8.3	200 400	9.4 16	5
25 M2FR	25	25	7.5	7	8	200 400	8.8 16	6.5
32 M2FR	32	32	12.5	8	7	400	16	9
40 M2FR	40	40	20	9	6.6	400	16	11
50 M2FR	50	50	30	10	5.8	400	15	16
65 M2FR	65	65	50	11	10	400 800	10 16	21
80 M2FR	80	80	80	13	6.7	400 800	10 16	38

Definition of kys-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats

KS-6

Valve Motors

Strainer

250°C - 300°C

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensio	ons						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
20 M2FR	150	63	112	105	16	75	14x(4)
25 M2FR	160	70	117	115	16	85	14x(4)
32 M2FR	180	75	151	140	18	100	19x(4)
40 M2FR	200	85	155	150	19	110	19x(4)
50 M2FR	230	95	169	165	19	125	19x(4)
65 M2FR	290	110	180	185	19	145	19x(4)
80 M2FR	310	120	180	200	19	160	19x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type M2FR Cast iron, PN 16, DN 100 – 150 mm, Reverse acting

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{VS}}{k_{VT}}$ > 25
- Double seated
- Reverse acting (normally closed)
- · For cooling water and lubrications

Applications

Valves type M2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature or pressure differential regulators.

As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, Δp_L , against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

Please find below the max. allowable values of $\Delta p_{\rm L}$ as well as the max. allowable inlet pressures for opening the valves, $p_{\rm 1max}$ for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast iron EN-GJL-250 with flanges drilled according to EN 1092-2. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The linear characteristic will not cease until the flow has dropped below 4% of the full flow.

2.3.07-I

GB-1

Technical Data

Materials:	
- Valve body	Cast iron
	EN-GJL-250
- Trim	Stainless steel
- Nuts, bolts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	Double seated
Flow characteristic	Almost quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}}$ > 25
Function	Opening with
	pressure on
	spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges	EN 1092-2 PN 16
Counter flanges	DIN 2633 / DS623
Colour	Grey

Specifica	ations						
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _L bar	Actuat. force N	Weight kg
100 M2FR	100	100	125	20	12.1	800	39
125 M2FR	125	125	215	20	9	800	53
150 M2FR	150	150	310	20	7.5	800	73

Subject to changes without notice.

2-way Control Valves type M2FR Cast iron, PN 16, DN 100 – 150 mm, Reverse acting

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension	s						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
100 M2FR	350	145	240	220	24	180	18x(8)
125 M2FR	400	160	260	250	26	210	18x(8)
150 M2FR	400	180	293	285	26	240	22x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2

3-way control valves type M3F Cast iron, PN 16, DN 20 – 65 mm, Flanged ends

2.3.08-J

GB-1

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Same k_{vs}-value as mixing and diverting valve
- · Quadratic/linear characteristic
- · Ideal for controlling process and central heating plants.

Applications

Control valves type M3F are designed for lubricants, hot water and other liquids and can be installed in pipe systems as mixing or diverting valves.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet No. 9.0.00.

Design

The valve components - seats and cone - are made of gun metal, the stem - of stainless steel.

The valve body is made of cast iron EN-GJL-250 with flanges drilled according to EN 1092-2 PN 16.

The thread for the actuator connection is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure. The leakage rate is less than 0.5 % of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being installed, connection A-AB is fully open and connection B-AB completely closed by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection B-AB is fully open and connection A-AB completely closed. The valve characteristics are as follows:

Port A-AB and AB-A: guadratic

Port B-AB and AB-B: almost linear These characteristics ensure constant total flow under almost all pressure conditions and optimum circulation in the individual circuits.

Specifica	ation				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value* m³/h	Lifting height mm	Weight kg
20 M3F	20	20	6.3	7.5	6
25 M3F	25	25	10	9	7
32 M3F	32	32	16	10	10
40 M3F	40	40	25	11	14
50 M3F	50	50	38	11.5	18
65 M3F	65	65	63	14.5	26

* Same k_{vs}-values for mixing and diverting valves

Technical data Materials: Valva hadu

- Valve body	Cast Iron
	EN-GJL-250
- seats and cone	Gun metal RG 5
	DIN/EN 1982
	CC491K
- spindle	Stainless steel
	(W. No. 1.4305)
- bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	2 balanced single
	seats
Valve characteristic	Quadratic/linear
Regulating capability	$\frac{k_{VS}}{k_{Vr}}$ > 25
Leakage	≤ 0.5 % of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges - drilled	
according to	EN 1092-2 PN 16
Counter flanges	DIN 2633
Colour	Grey
Subject to changes w	vithout notice.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 F-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

AB (1) A(2) B (3)

Port Numbering

Valves type M3F are marked with the internationally recognized port designations: A, B, AB.

Port AB common port always open Port A closes by activating the spindle opens by activating the spindle Port B

3-way control valves type M3F Cast iron, PN 16, DN 20 – 65 mm, Flanged ends

Definition of kys-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed with vertical as well as horizontal spindles.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Subject to changes without notice.

Dimensions							
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
20 M3F	150	115	63	105	16	75	14x(4)
25 M3F	160	130	70	115	16	85	14x(4)
32 M3F	180	150	75	140	18	100	18x(4)
40 M3F	200	160	85	150	18	110	18x(4)
50 M3F	230	190	95	165	20	125	18x(4)
65 M3F	290	220	110	185	20	145	18x(4)

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2
3-way Control Valves type M3F Cast iron, PN 10, DN 80 – 150 mm

Characteristics

- Nominal pressure PN 10 (10 bar/max 120°C, option 9 bar/max 160°C)
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 For regulating of process- and central heating plants

Applications

Control valves type M3F are designed for regulating of water, lubricating oil and other liquid media and can be mounted in the pipe system as either mixing or diverting valves. However when mounting as a diverting valve the pressure drop is increased, compared with mounting as a mixing valve. See "Important note" on page 2.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Туре	Flange connection DN in mm	Opening mm	Mixing valve k _{vs} -value m³/h	Diverting valve k _{vs} -value m³/h	Lifting height mm	Weight kg
80 M3F	80	80	80	69	11	35
100 M3F	100	100	125	108	13	44
125 M3F	125	125	215	185	18	72
150 M3F	150	150	310	267	20	111

Specification

Clore	ĭĭs
Controls	A/S

Design

The valve components - seats and cone are made of gun metal, the spindle is made of stainless steel.

The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The connection thread for the actuator is G1B ISO 228. The valves have two balanced single seats and are designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type M3F are marked with the letters AB, A and B.

Port AB(1) common port always open Port A(2) closes at load on spindle Port B(3) opens at load on spindle

Function

Without an actuator being installed, connection A-AB is fully open and connection B-AB completely closed, by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection B-AB is fully open and connection A-AB completely closed.

Technical data

- Valve body
- Seats and cone
- Spindle
Nominal pressure Seating
Valve characteristic Temperature range Mounting Flanges drilled according to Counter flanges Colour

Cast iron EN-GJS-400-15 Gun metal RG 5 CuSn5Zn5Pb5-C stainless steel (W.no. 1.4436) PN 10 Two balanced single seats Almost linear Max.120°C/160°C See page 2

EN 1092-2 PN 10 DIN 2632 Grey

Subject to changes without notice.

D

G1B

Definition of k_{vs}-value

The $k_{vs}\text{-value}$ is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the $k_{\rm vs}\text{-}value$ will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Dimension sketch

H1

Н

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
80 M3F	310	155	180	127	200	20	160	18x(8)
100 M3F	350	175	195	141	220	22	180	18x(8)
125 M3F	400	240	245	171	250	24	210	18x(8)
150 M3F	480	270	280	189	285	24	240	22x(8)

Characteristics

 Nominal pressure 80-150 mm: PN 10 max. 120°C 200/175-200 mm: PN 16 max. 120°C 300/250-300 mm: PN 10 max. 120°C 300/250-500 means $\frac{k_{VS}}{k_{Vr}} > 25$

- · For cooling and heating purposes

Applications

Control valves type M3FA are designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines. Is designed for use in conjunction with Clorius valve motor type AVM234 or AVF234.

Dimensioning

For sizing of control valves up to DN 150 please see "Quick Choice" leaflet no. 9.0.00. For sizing of control valves bigger than 150 mm following equation can be used:

$$\begin{split} k_{vs} &= \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}} \\ \Delta p(bar) &= \left(\frac{G(m^3 / h)}{k_{vs}}\right)^2 \end{split}$$

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of cast iron and the valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type M3FA are marked with the letters AB, B and A.

FUILA	closes at load on spindle
Port B	opens at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection A-AB is kept fully open and connection B-AB is fully closed.

In the other extreme position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally.

Technical data

Materia	s				
- Valve	body:				
80 -	- 300 M3FA	Nodular cast iron			
		EN-GJS-400-15			
- Trim	Gun metal F	RG 5, CuSn5Zn5Pb5-C			
- Valve	spindle	Stainless steel			
		(W.no. 1.4436)			
Nomina	l pressure				
8	80 – 300 M3FA	: PN 10 (max. 120°C)			
200/17	′5 – 200 M3FA	: PN 16 (max. 120°C)			
Seats	2	balanced single seats			
Valve cl	naracteristic	Almost linear			
Leakage	9	0.5%			
Tempera	ature range	Max. 120°C			
Mountin	g	See page 2			
Flanges	;	EN 1092-2 PN 10/16			
Note !	Valve type 20	0/175 M3FA has outer			
	measures	and flanges drilled as			
		valve type 200 M3FA.			
	Valve type 30	0/250 M3FA has outer			
	measures	and flanges drilled as			
		valve type 300 M3FA.			
Counter	flanges (sugg	ested)			
	80 – 150 M3	FA: DÍN 2632 – PN 10			
200	/175 – 200 M3	FA: DIN 2633 – PN 16			
300/250 – 300 M3FA: DIN 2632 – PN 10					

Subject to change without notice.

Specifications						
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value ¹) m³/h	Lifting height mm	Weight kg	
80 M3FA	80	80	80	11	35	
100 M3FA	100	100	125	13	44	
125 M3FA	125	125	215	18	72	
150 M3FA	150	150	310	20	111	
200/175 M3FA	200	200	425	22	165	
200 M3FA	200	200	555	28	160	
300/250 M3FA	300	300	865	28	306	
300 M3FA	300	300	1250	45	290	

¹⁾ The stated k_{ys} values apply for mixing valves. Diverting valves: 0.86 x (k_{ys} -values for mixing valves).

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note:

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations. Free height above / below the valve must be minimum 400 mm for mounting and operation of the AFM/F 234 Marine motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Туре	L mm	L1 mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
80 M3FA	310	155	117	127	20	200	160	18 x (8)
100 M3FA	350	175	132	141	22	220	180	18 x (8)
125 M3FA	400	240	181	171	24	250	210	18 x (8)
150 M3FA	480	270	216	189	24	285	240	23 x (8)
200/175 M3FA	600	325	238	238	20	340	295	23 x (12)
200 M3FA	600	325	238	238	20	340	295	23 x (12)
300/250 M3FA	850	450	305	305	25	445	400	23 x (12)
300 M3FA	850	450	305	305	25	445	400	23 x (12)

Subject to change without notice.

3-way Control Valves type M3F-I Cast iron, PN 10, DN 150 mm

Characteristics

- Nominal pressure PN 10 (10 bar/max 120°C)
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 For regulating of process- and central heating plants

Applications

Control valves type M3F-I are designed for regulating of water, lubricating oil and other liquid media and can be mounted in the pipe system as either mixing or diverting valves. However when mounting as a diverting valve the pressure drop is increased, compared with mounting as a mixing valve. See "Important note" on page 2.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Specification								
Туре	Flange connection	Opening	Mixing valve k _{vs} -value	Diverting valve k _{vs} -value	Lifting height	Weight		
	DN in mm	mm	m³/h	m³/h	mm	kg		
150 M3F-I	150	150	310	267	20	111		

Design

The valve components - seats and cone are made of gun metal, the spindle is made of stainless steel.

The valve body is made of cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The connection thread for the actuator is G1B ISO 228. The valves have two balanced single seats and are designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type M3F-I are marked with the letters AB, A and B.

Port AB Port A Port B

common port always open closes at load on spindle opens at load on spindle

Function

Without an actuator being installed, connection B-AB is fully open and connection A-AB completely closed, by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle. and when the spindle is pressed to the bottom, connection A-AB is fully open and connection B-AB completely closed.

Technical data

Materia	ıls:
Valvo	body

- Valve body
- Seats and cone
- Spindle

Nominal pressure Seating

Valve characteristic Temperature range Mounting Flanges drilled according to Counter flanges Colour

Cast iron EN-GJS-400-15 Gun metal RG 5 CuSn5Zn5Pb5-C stainless steel (W.no. 1.4436) PN 10 Two balanced single seats Almost linear Max. 120°C See page 2

EN 1092-2 PN 10 DIN 2632 Grey

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the $k_{\rm vs}\text{-}value$ will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations. Free height above / below the valve must be minimum 400 mm for mounting and operation of the AVF/M 234.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L	L1	H	H1	D (dia.)	b	k (dia.)	d mm dia.
	mm	mm	mm	mm	mm	mm	mm	(number)
150 M3F-I	480	270	280	189	285	24	240	22x(8)

Controls A/S

3-way Control Valves type M3FA-I (Ports A-AB interchanged) 2.3.12.02-B

Cast iron, PN 16, DN 200/175-200 mm / PN 10, DN 300/250-300 mm

Characteristics

- Nominal pressure 200/175-200 M3FA-I: PN 16 max.120°C 300/250-300 M3FA-I: PN 10 max.120°C
- Regulating capability $\frac{k_{vs}}{k_{vs}} > 25$
- · Two single seats
- · For cooling and heating purposes

Applications

Control valves type M3FA-I are designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines.

Dimensioning

For sizing of control valves following equation can be used:

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of cast iron and the valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type M3FA-I are marked with the letters AB, B and A.

ort A	opens at load on spindle
ort B	closes at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection B-AB is kept fully open and connection A-AB is fully closed.

In the other extreme position connection B-AB is fully closed and connection A-AB is fully open. In the intermediate positions the opening degrees change proportionally.

GB-1

Technical data

Materials	
- Valve body	Nodular cast iron
	EN-GJS-400-15
- Trim	Gun metal RG 5
	CuSn5Zn5Pb5-C
- Valve spindle	Stainless steel
	(W.no. 1.4436)
Nominal pressure	
300/250-300 M3FA-I:	PN 10 (max.120°C)
200/175-200 M3FA-I:	PN 16 (max.120°C)
Seats 2 b	alanced single seats
Valve characteristic	Almost linear
Leakage	0.5%
Temperature range	Max. 120°C
Mounting	See page 2
Flanges E	N 1092-2 PN 10/16
Note ! Valve type 200/1	75 M3FA-I has outer
measures a	ind flanges drilled as
Va	live type 200 M3FA-I
Valve type 300/2	50 M3FA-I has outer
measures a	ind flanges drilled as
Va	lve type 300 M3FA-I
Counter flanges (sugges	sted)
200/175-200 M3FA-I:	DIN 2633 – PN 16
300/250-300 M3FA-I:	DIN 2632 – PN 10

Subject to change without notice.

Specifications					
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value¹) m³/h	Lifting height mm	Weight kg
200/175 M3FA-I	200	200	425	22	165
200 M3FA-I	200	200	555	28	160
300/250 M3FA-I	300	300	865	28	306
300 M3FA-I	300	300	1250	45	290

¹⁾ The stated k_{vs} values apply for mixing valves. Diverting valves: 0.86 x (k_{vs}-values for mixing valves).

3-way Control Valves type M3FA-I (Ports A-AB interchanged) 2.3.12.02-B

Cast iron, PN 16, DN 200/175-200 mm / PN 10, DN 300/250-300 mm

Definition of kvs-value

The $k_{vs}\text{-value}$ is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note:

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations. Free height above / below the valve must be minimum 400 mm for mounting and operation of the AVM/AVF 234 motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to change without notice.

GB-2

Туре	L mm	L1 mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
200/175 M3FA-I	600	325	238	238	20	340	295	23 x (12)
200 M3FA-I	600	325	238	238	20	340	295	23 x (12)
300/250 M3FA-I	850	450	305	305	25	445	400	23 x (12)
300 M3FA-I	850	450	305	305	25	445	400	23 x (12)

3-WAY THERMOSTATIC VALVE TYPE M3FSI

CAST IRON, DN 50 - 150 mm,

TYPICAL APPLICATIONS - MARINE/OFFSHORE/POWER GENERATION Engines - lube oil, high and low temperature water, fresh water. Compressors and Gearboxes - lube oil Heat Recovery and Fresh Water Generators - water circuits

DIMENSIONING

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{\Omega(m^3/h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{\Omega(m^3/h)}{k_{vs}}\right)^2$$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m^3/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DESIGN

The valve body is made of cast iron, Class 30, ASTM A126-04 (EN-GJL-200). The valve flanges are drilled according to, EN1092-2

(ANSI flanges available on request).

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

SPECIFICATION	5		
Туре	Flange connection DN in mm	kvs-value m³ /h	Weight kg
50 M3FSI	50	53	11
65 M3FSI	65	82	22
80 M3FSI	80	86	26
100 M3FSI	100	173	44
125 M3FSI	125	285	55
150 M3FSI	150	389	74

Subject to changes without notice.

CHARACTERISTICS

- Nominal pressure DN 50-150 mm: PN 10,
- Temperature range 7 to 127 °C

APPLICATIONS

Thermostatic control valve type M3FSI is a three-way control valve unique due to its internal sensor technology. The thermostatic valve is ideal for controlling fluid temperature, in cooling and heat recovery systems, and other temperature controlling applications such as: compressors, industrial engines, marine, power generation, renewable energy among others.

3-WAY THERMOSTATIC VALVE TYPE M3FSI

CAST IRON, DN 50 - 150 mm,

FUNCTION

The thermostatic valve uses the principle of expanding wax, which undergoes large expansion rates within a relatively narrow temperature range. The self-acting element activates a cone, which directs the flow. All Clorius thermostatic valves are factory set at predetermined temperatures: no further adjustments are necessary. A wide range of temperatures are available for water and oil temperature control applications.

When using in a diverting application, on start-up the total fluid flow is routed back to the main system. As fluid temperature rises to the control range, some fluid is diverted to the cooling system. As fluid temperature continues to increase, more flow is diverted. When the thermostat is in a fully stroked condition, all fluid flow is directed to the cooling system. Clorius thermostatic valves may also be used in mixing application.

In a mixing application, port B is the hot by-pass fluid inlet and port C the cold fluid inlet from the cooler. The flows mix and the thermostats adjusts to reach the setpoint temperature of the mixed output flow through port A (commen port).

TECHNICAL DATA

Materials:	
- Valve body	Cast iron
	ASTM A126-04 (EN-GJL-200)
Temperature range	7 to 127 °C
Flanges	EN1092-2
	(ANSI flanges available on request)

Recommended pressure drop 0,15 - 0,5 bar

Max. static pressure DN 50-150 Optional

10 bar Manual override Nickel plated thermostatic elements Wheep holes

MOUNTING

The valve can be installed in all positions. No additional space required.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

PORT NUMBERING

Subject to changes without notice.

3-WAY THERMOSTATIC VALVE TYPE M3FSI 2.3.15-B

CAST IRON, DN 50 - 150 mm,

SET POINT TEMPERATURES

				1	I		
	Dimensions		Dimensions Max. Width in mm E		Flange EN 1092	drilling -2 in mm	
Туре	Y	W	Z		Outer diameter	Bolt circle	Dia. of holes x no. of holes
50 M3FSI	114	228	153	159	ø159	ø125	ø19 x 4
65 M3FSI	129	259	170	206	ø185	ø145	ø19 x 4
80 M3FSI	136	273	175	203	ø200	ø160	ø19 x 8
100 M3FSI	201	402	217	279	ø220	ø180	ø19 x 8
125 M3FSI	247	494	243	356	ø250	ø210	ø19 x 8
150 M3FSI	245	490	256	406	ø285	ø240	ø23 x 8
				-	Subject	t to chan	ge without notice
B			A C	в			
				B			

Set Point temperature, deg. C.

Ca

Clorius Controls Three-Way Temperature Regulator with manual override Type Series 226.0121, Nominal Size DN 100

Technical Data Material - Body EN GJL-250 - Inner Parts SS/Ms Thermostat 237.0120-xxx Sealing Kit NBR **Operation Temperature** up to 120 °C **Operation Pressure** up to 16 bar adm. Differential Pressure up to 16 bar Nominal Pressure PN 16

57 - 66 °C

62 - 71 °C

Deliverable temperature ranges part-no. 237.0120-xxx 05 - 15 °C 37 - 47 °C 66 - 74 °C 82 - 93 °C 14 - 26 °C 39 - 50 °C 68 - 78 °C 85 - 96 °C 20 - 30 °C 43 - 54 °C 71 - 79 °C 88 - 99 °C 27 - 37 °C 51 - 60 °C 74 - 82 °C 93 - 103 °C

77 - 85 °C

79 - 88 °C

102 - 113 °C

Installation:

32 - 41 °C

35 - 43 °C

The installation can be done selectively as follows:				
as divide	ıs divider		ig valve	
path A:	from motor	path C:	from cooler	
path B:	to bypass	path B:	from bypass	
path C:	to cooler	path A:	to motor	
The pathes have been marked on the connections.				
The temp	erature regulator may be	installed i	in all.	

Manual override for the mechanical opening of the cooling path in case of any failure of the thermostat. This emergency manual adjustment is not to be used for adjustment during automatic operation.

use as divider

use as mixing valve

Clorius Controls Three-Way Temperature Regulator with manual override Type Series 226.0121, Nominal Size DN 150

Technical Data

Material	
- Body	EN GJL-250
- Inner Parts	SS/Ms
Thermostat	237.0120-xxx
Sealing Kit	NBR
Operation Temperature	up to 120 °C
Operation Pressure	up to 16 bar
adm. Differential Pressure	up to 16 bar
Nominal Pressure	PN 16
Connection	flange EN 1092-2
	form B

Manual override for the mechanical opening of the cooling path in case of any failure of the thermostat. This emergency manual adjustment is not to be used for adjustment during automatic operation.

†			
f			
	ں ج	-	

use as divider

use as mixing valve

Deliverable temperature ranges part-no. 237.0120-xxx				
05 - 15 °C	37 - 47 °C	66 - 74 °C	82 - 93 °C	
14 - 26 °C	39 - 50 °C	68 - 78 °C	85 - 96 °C	
20 - 30 °C	43 - 54 °C	71 - 79 °C	88 - 99 °C	
27 - 37 °C	51 - 60 °C	74 - 82 °C	93 - 103 °C	
32 - 41 °C	57 - 66 °C	77 - 85 °C	102 - 113 °C	
35 - 43 °C	62 - 71 °C	79 - 88 °C		

Installation:

The installation can be done selectively as follows:				
as mixing valve				
path C: from cooler				
path B: from bypass				
path A: to motor				
The pathes have been marked on the connections.				
installed in all.				

2-way Control Valves type H1F, Cast steel PN 40, DN 15/4 – 50 mm

2.4.02-K GB-1

Characteristics

- Nominal pressure PN 40
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Single-seated, tight closing
- Quadratic characteristic

Applications

Control valves type H1F are designed for regulating hot water, steam and hot oil systems.

The valves are used in conjunction with our temperature or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Specifications

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat and cone - are made of stainless steel.

The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1 or ANSI B16.5 Class 150. The thread for the actuator connection is G1B ISO 228.

The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical Data

	Materials:	
	Valve body	Cast steel
		GP240GH
		(GS-C25)
	- trim	Stainless steel
	- bolts, nuts	24 CrMo 4/A4
	Nominal pressure	PN 40
ght	Seating	Single seated
3	Flow characteristic	Quadratic
3	Regulating capability	$\frac{k_{\rm VS}}{k_{\rm VT}} > 25$
3	Seat leakage	$\leq 0.05\%$ of k _{vs}
4	Temperature range	See diagram
4	Mounting	See page 2
4	Flanges drilled	
7	according to	EN 1092-1 PN 40
7		or ANSI B16.5
7		Class 150
9	Counter flanges	DIN 2635
1	Colour	Green
0		

Subject to changes without notice.

Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
15 / 4 H1F	15	4	0.20	6	3.3
15 / 6 H1F	15	6	0.45	6	3.3
15 / 9 H1F	15	9	0.95	6	3.4
15 / 12 H1F	15	12	1.7	6	3.4
15 H1F	15	15	2.75	6	3.4
20 / 4 H1F	20	4	0.2	6.5	4.7
20 / 6 H1F	20	6	0.45	6.5	4.7
20 / 9 H1F	20	9	0.95	6.5	4.7
20 H1F	20	20	5	6.5	4.9
25 H1F	25	25	7.5	7	6.1
32 H1F	32	32	12.5	8	9.0
40 H1F	40	40	20	9	10.8
50 H1E	50	50	30	10	15.5

2-way Control Valves type H1F, Cast steel PN 40, DN 15/4 – 50 mm

2.4.02-K GB-2

Definition of kvs-value

The k_{VS} -value is identical to the IEC flow coefficient k_V and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_V , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Cooling Unit KS-5

Dimensions										
						EN 109	92-1	ANSI B16.5 Class 150		
Туре	L mm	H1 mm	H2 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)
15 / 4 H1F	130	80	60	16	95	65	14x(4)	89	61	16x(4)
15 / 6 H1F	130	80	60	16	95	65	14x(4)	89	61	16x(4)
15 / 9 H1F	130	80	60	16	95	65	14x(4)	89	61	16x(4)
15 / 12 H1F	130	80	60	16	95	65	14x(4)	89	61	16x(4)
15 H1F	130	80	60	16	95	65	14x(4)	89	61	16x(4)
20 / 4 H1F	150	85	65	18	105	75	14x(4)	98	70	16x(4)
20 / 6 H1F	150	85	65	18	105	75	14x(4)	98	70	16x(4)
20 / 9 H1F	150	85	65	18	105	75	14x(4)	98	70	16x(4)
20 H1F	150	85	65	18	105	75	14x(4)	98	70	16x(4)
25 H1F	160	95	70	18	115	85	14x(4)	108	79	16x(4)
32 H1F	180	105	75	18	140	100	18x(4)	118	89	16x(4)
40 H1F	200	110	85	18	150	110	18x(4)	127	98	16x(4)
50 H1F	230	125	95	20	165	125	18x(4)	153	121	19x(4)

Cooling Unit KS-6

Subject to changes without notice.

Balanced 2-way Control Valves type H1FB Cast steel, PN 40, DN 25 – 80 mm

2.4.03-I GB-1

Characteristics

- · Pressure balanced
- Single seated, tight closing
- · Quadratic valve characteristic
- · Regulating capability better than 25:1

Applications

The pressure balanced control valves type H1FB are designed for regulating hot water, steam, hot oil etc. and can be used if a single-seated valve is required, but where the system pressure and valve size, out of regard for the pressure force of the actuator, necessitate a pressure balanced valve.

The valves are installed combined with one of our temperature regulators in control systems in domestic premises, district heating systems, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat, cone and bellows - are made of stainless steel.

The bellows for balancing the pressure is fitted on the valve spindle and it reduces

the power necessary for closing the valve, as the upstream pressure of the medium through the hollow valve spindle acts outside and the pressure after the valve acts inside the bellows system.

The valve body is made of cast steel GP240GH (GS-C25) with connection flanges drilled according to EN 1092-1. The connection thread for the actuator is G1B ISO 228.

The valves are single seated and tight closing. The leakage is less than 0.05% of full flow (see VDI/VDE 2174).

Function

Without an actuator being connected, the valve is held in open position by means of a spring and the bellows system. With pressure on the spindle the valve will close.

In connection with our thermostats, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Technical Data

Materials:

- Valve body	Cast steel
	GP240GH
	(GS-C25)
- Components	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 40
Seating	Single seated
Valve characteristic	Quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}}$ > 25
Leakage	\leq 0.05% of k _{vs}
Temperature range	See pressure/
	temperature
	diagram
Mounting	See page 2
Flanges	EN 1092-1 PN 40
Colour	Green

Specifications										
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg					
25 H1FB	25	25	7.5	7	6					
32 H1FB	32	32	12.5	8	9					
40 H1FB	40	40	20	9	13					
50 H1FB	50	50	30	10	16					
65 H1FB	65	65	50	13	23					
80 H1FB	80	80	80	16	38					

Subject to changes without notice.

Balanced 2-way Control Valves type H1FB Cast steel, PN 40, DN 25 – 80 mm

2.4.03-I GB-2

Definition of kys-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C 250°C - 350°C 250°C - 350°C	KS-4 KS-5 KS-6	All actuators Thermostats El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual Adjusting Device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling Unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension sketch

Dimensions									
Туре	L mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)		
25 H1FB	160	180	70	18	115	85	14x(4)		
32 H1FB	180	195	75	18	140	100	18x(4)		
40 H1FB	200	205	85	18	150	110	18x(4)		
50 H1FB	230	225	95	20	165	125	18x(4)		
65 H1FB	290	260	110	22	185	145	18x(8)		
80 H1FB	310	275	115	24	200	160	18x(8)		

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Balanced 2-way Control Valves type H1FBN Cast steel, PN 40, DN 15 - 80 mm

Characteristics

- Nominal pressure PN 40
- · Pressure balanced valve
- Regulating capability $\frac{k_{VS}}{k_{VR}} > 25$
- · Single-seated, balanced
- · Quadratic characteristic

Applications

Balanced control valves type H1FBN are designed for regulating hot water, steam and hot oil systems.

Balanced valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a standard single seated valve, and where the leakage rate for a double-seated valve is unacceptable.

The valves are used in conjunction with our temperature- or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Design

The valve components - spindle, seat, cone - are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25). The thread for the actuator connection is G1B ISO 228. The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in open position by means of a spring. With force on the spindle the valve will close.

In connection with our thermostats or electric actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting double-seated valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Cast steel

GP240GH

(GS-C25)

Stainless steel

24 CrMo 5/A4

Technical data

Materials:

- Valve body
- Components - Nuts, bolts

Specifications Flange connection Opening k_{vs}-value Lifting height Weight Туре DN in mm m³/h kg mm mm 15 H1FBN 7.5 4 15 15 4 20 H1FBN 20 20 6.3 7.5 5 25 H1FBN 25 25 9 6 10 32 H1FBN 32 32 16 10 9 25 13 40 H1FBN 40 40 11 50 H1FBN 50 50 35 11.5 16 65 H1FBN 65 65 58 14.5 23 80 H1FBN 80 80 80 16 38

Nominal pressure PN 40

Seating Single-seated Valve characteristic Quadratic Regulating capability k_{vs} > 25 k_{vr} $\leq 0.05\%$ of k_{vs} Leakage Temperature range See pressure/temperature diagram Flanges drilled

according to Colour

EN 1092-1 PN 40 Green

Definition of kys-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure. Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to changes without notice.

Balanced 2-way Control Valves type H1FBN Cast steel, PN 40, DN 15 - 80 mm

GB-2

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Dimensioning

Туре		Water / Steam		1	hermostat	s	Valve a	ctuators	Pressure differ	ential controllers	
турс		Water / Otean		V2	V4	V8	V / AV	VB / VBA	TD66-4	TD66-8	
	Water:	$\Delta p_L \& max. p_1$	bar								
	Steam:	$\Delta p_L \& max. p_1$	bar								
	Water:	∆p _L & max. p ₁	bar								
20 11 17 010	Steam:	$\Delta p_1 \& max. p_1$	bar	16	16				16		
	Water:	∆p _L & max. p ₁	bar	10	10				10		
23 11 17 010	Steam:	∆p _L & max. p ₁	bar						16		
	Water:	∆p _L & max. p ₁	bar			16	16	10			
52 TTT DIV	Steam:	∆p _L & max. p ₁	bar							16	
	Water:	∆p _L & max. p ₁	bar	-	10				10	10	
	Steam:	$\Delta p_L \& max. p_1$	bar	-	9]			9		
	Water:	$\Delta p_1 \& max. p_1$	bar	-	9]			9		
	Steam:	∆p _i & max. p ₁	bar	-	8				8		
	Water:	∆p _L & max. p ₁	bar	-	7]		-	8		
65 H1FBN	Steam:	∆p _L & max. p ₁	bar	-	6]		-	7		
	Water:	$\Delta p_{L} \& max. p_{1}$	bar	-	5]		-	5		
	Steam:	$\Delta p_{L} \& max. p_{1}$	bar	-	4]		-	4		

 p_1 = absolute pressure

Subject to changes without notice.

Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Clorius Controls A/S

Dimensions	6						
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
15 H1FBN	130	101	80	95	14	65	14x(4)
20 H1FBN	150	107	85	105	16	75	14x(4)
25 H1FBN	160	112	70	115	16	85	14x(4)
32 H1FBN	180	122	75	140	18	100	18x(4)
40 H1FBN	200	125	85	150	19	110	18x(4)
50 H1FBN	230	140	95	165	19	125	18x(4)
65 H1FBN	290	154	110	185	19	145	18x(8)
80 H1FBN	310	164	115	200	19	160	19x(8)

2-way Control Valves type H2F Cast Steel, PN 40, DN 20 - 80 mm

Characteristics

- Nominal pressure PN 40
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Double-seated
- · Adjustable seat interspace
- Quadratic characteristic

Applications

Control valves type H2F are designed for regulating hot water, steam and hot oil systems.

The double-seated valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a single-seated valve.

The valves are used in conjunction with our temperature or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Specific	ations				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
20 H2F	20	20	5	6.5	5
25 H2F	25	25	7.5	7	6.5
32 H2F	32	32	12.5	8	9
40 H2F	40	40	20	9	11
50 H2F	50	50	30	10	16
65 H2F	65	65	50	11	21
80 H2F	80	80	80	13	38

Technical Data

Materials:	
 Valve body 	Cast steel
	GP240GH
	(GS-C25)
- Spring	1.4568
- Cone	1.4408, 1.4305
- Upperseat	AISI 303
- Lowerseat	1.4301, 1.4305,
	1.4307
- Components	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 40
Seating	Double-seated
Valve characteristic	Quadratic
Regulating capability	$\frac{k_{VS}}{k_{Vr}}$ > 25
Function	Closing with
	pressure on
	spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/
	temperature
	diagram
Mounting	See page 2
Flanges drilled	
according to	EN 1092-1 PN 40
Counter flanges	DIN 2635
Colour	Green

2-way Control Valves type H2F Cast Steel, PN 40, DN 20 – 80 mm

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

D

Cooling Unit KS-5

Cooling Unit KS-6

DN 80

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Accessories Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170° C and 250° C.

H2

H1

GB-2

2-way Control Valves type H2F, Cast steel PN 25, DN 100 – 150 mm / PN 16, DN 150 mm

2.4.06-L GB-1

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Double seated
- Characteristic almost linear

Applications

Control valves type H2F are designed for use in regulating high pressure hot water, steam and heat transfer oil, ammonia, freon, etc.

The double-seated valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a single-seated valve.

The valves are used in conjunction with temperature or pressure differential regulators for controlling district or central heating plants, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" datasheet no. 9.0.00.

Design

The valve components – spindle, seats and cone – are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

Specifica	Specification							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg			
100 H2F	100	100	125	20	38			
125 H2F	125	125	215	20	73			
150 H2F	150	150	310	20	76			

Technical Data	
Materials	
- Valve body	Cast steel GP240GH (GS-C25)
- Components	Stainless steel
-Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 25
Seating	Double seated
Valve characteristic	Almost quadratic
Regulating capability	$\frac{k_{vs}}{k} > 25$
Function	Closing with
	pressure on spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/
	temperature
	diagram
Mounting	See page 2
Flanges drilled	
according to	EN 1092-1 PN 25
Counter flanges	DIN 2635
Colour	Green

Note: All Clorius valves are approved in accordance to the Pressure Equipment Directive (PED). Valve type 150 H2F in only approved for nominal pressure PN 16, but for applications not effected by the PED, valve type 150 H2F can be delivered for nominal pressure PN 25.

Subject to change without notice.

2-way Control Valves type H2F, Cast steel PN 25, DN 100 – 150 mm / PN 16, DN 150 mm

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions	;						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
100 H2F	350	185	209	235	24	190	23x(8)
125 H2F	400	240	230	270	26	220	27x(8)
150 H2F	400	240	230	300	28	250	27x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

3-way Control Valves type H3F Cast steel, PN 40, DN 20 – 65 mm, Flanged ends

2.4.07-L GB-1

Characteristics

- Nominal pressure PN 40
- Regulating capability $\frac{k_{VS}}{k_{Vr}}$ > 25
- Same k_{vs}-value as mixing and diverting valve
- Quadratic/linear characteristic

Applications

Control valves type H3F are designed for control of hot oil, water and other liquids and can be installed in pipe systems as mixing or diverting valves.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel.

The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1.

The thread for the actuator connection is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Flange placing

Note that all flanges and the connecting boss for actuators are in the same plane for compact pipe mounting and that the mutual placing of the ports has been changed compared with our other 3-port valves.

Port numbering

Valves type H3F are marked with the internationally recognized port designations: A, B, AB.

Port AB common port always open Port A closes by activating the spindle Port B opens by activating the spindle

Specific	Specification								
Туре	Flange Connection DN in mm	Opening mm	k_{vs}-value * m³/h	Lifting height mm	Weight kg				
20 H3F	20	20	6.3	7.5	6				
25 H3F	25	25	10	9	7				
32 H3F	32	32	16	10	10				
40 H3F	40	40	25	11	14				
50 H3F	50	50	38	11.5	18				
65 H3F	65	65	63	14.5	26				

* Same k_{vs}-values for mixing and diverting valves

Function

Without an actuator being installed, connection A-AB is fully open and connection B-AB completely closed, by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection B-AB is fully open and connection A-AB completely closed.

The valve characteristics are as follows: Port A-AB and AB-A: quadratic

Port B-AB and AB-B: almost linear These characteristics ensure constant total flow under almost all pressure conditions and optimum circulation in the individual circuits.

Technical data

Materials:	
- Valve body	Cast steel
	GP240GH
	(GS-C25)
	(W. No. 1.0619)
- Trim	Stainless steel
	(W. No. 1.4305)
- Bolts, nuts	Steel
	(24 CrMo 4/A4)
Nominal pressure	PN 40
Seating	2 balanced single
	seats
Valve characteristic	Quadratic / linear
Regulating capability	$r \frac{K_{VS}}{K_{Vr}} > 25$
Seat leakage	$\leq 0.5\%$ of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges - drilled	
according to	EN 1092-1 PN 40
Counter flanges	DIN 2635
Colour	Green
Subject to changes	without notico

Subject to changes without notice.

3-way Control Valves type H3F Cast steel, PN 40, DN 20 – 65 mm, Flanged ends

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve temperature	Cooling unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170° C and 250° C.

Dimension	s						
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
20 H3F	150	115	63	105	16	75	14x(4)
25 H3F	160	130	70	115	18	85	14x(4)
32 H3F	180	150	75	140	18	100	18x(4)
40 H3F	200	160	85	150	18	110	18x(4)
50 H3F	230	190	95	165	20	125	18x(4)
65 H3F	290	220	110	185	20	145	18x(8)

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2

3-way Control Valves type H3F Nodular cast iron, PN 16, DN 80 – 150 mm

Characteristics

- Nominal pressure PN 16
- Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- For regulating of process- and central heating plants

Applications

Control valves type H3F are designed for regulating of hot water, lubricating oil and other liquid media and can be mounted in the pipe system as either mixing or diverting valves. However when mounting as a diverting valve the pressure drop is increased, compared with mounting as a mixing valve. See "Important note" on page 2.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Specification

Des	sign

The valve components - seats and cone - are made of gun metal, the spindle is made of stainless steel.

The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The connection thread for the actuator is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure.

The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174). Tight between port 1(AB) og 3(B) is optional.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type H3F are marked with the figures 1, 2 and 3.

The letters in parentheses refer to the corresponding internationally adapted designations.

Function

Without an actuator being installed, connection 2-1 is fully open and connection 3-1 completely closed, by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection 3-1 is fully open and connection 2-1 completely closed.

Technical data

ne	Materials:	
ed	- Valve body	Cast steel
		GP240GH
		(GS-C25)
	- Seats and cone	Gun metal RG5
		CuSn5Zn5Pb5-C
B)	- Spindle	stainless steel
€-		(W.no. 1.4436)
	Nominal pressure	PN 16
	Seating	Two balanced
		single seats
	Valve characteristic	Almost linear
en	Temperature range	Max. 120°C
;		(160°C option)
	Mounting	See page 2
	Flanges drilled	
	according to	EN 1092-2 PN 16
		or ANSI B16.5
		Class 150
ıt	Counter flanges	DIN 2633
	Colour	Green

Туре	Flange connection DN in mm	Opening mm	Mixing valve k _{vs} -value m³/h	Diverting valve k _{vs} -value m³/h	Lifting height mm	Weight kg
80 H3F	80	80	80	69	11	35
100 H3F	100	100	125	108	13	44
125 H3F	125	125	215	185	18	72
150 H3F	150	150	310	267	20	111

Subject to changes without notice.

GB-2

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Free height above / below the valve must be minimum 645 mm for mounting and operation of the MT90 Marine motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
80 H3F	310	155	180	127	200	19	160	19x(8)
100 H3F	350	175	195	141	220	19	180	19x(8)
125 H3F	400	240	245	171	250	19	210	19x(8)
150 H3F	480	270	280	189	285	24	240	23x(8)

2-way Control Valves type H2FR, Cast steel PN 40, DN 20 – 80 mm, 2 Seats, Reverse acting

2.4.09-I GB-1

Characteristics

- Nominal pressure PN 40
- Regulating capabilities $\frac{k_{vs}}{k_{vr}}$ > 25
- Reverse acting (normally closed)
- For cooling systems or similar
- Adjustable seats

Applications

Valves type H2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature or pressure differential regulators for controlling industrial processes or cooling systems. As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, Δp_L , against which a valve can close depends on the spring. When opening the valve, the actuator has to overcome the spring force.

The table below shows max. allowable values of Δp_L as well as the max. allowable inlet pressures for opening the valves, p_{1max} , for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components – spindle, seat and cone - are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1. The thread for the actuator connection is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical Data

Materials:	
- Valve body	Cast steel
	GP240GH
	(GS-C25)
- Trim	Stainless steel
- Nuts, bolts	24 CrMo 4/A4
	Nominal pressure
	PN 40
Seating	Double seated
Flow characteristic	Quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}}$ > 25
Leakage rate	\leq 0.5% of k _{vs}
Function	Opening with
	pressure on
	spindle
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges drilled	
according to	EN 1092-1 PN 40
Counter flanges	DIN 2635/BS 4504
Colour	Green

Subject to changes without notice.

Specific	cations							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _∟ bar	Actuat. force	Corresp. p _{1max} bar	Weight kg
20 H2FR	20	20	5	6.5	8.3	200 400	9.4 25	5
25 H2FR	25	25	7.5	7	8	200 400	8.8 25	6.5
32 H2FR	32	32	12.5	8	7	400	16	9
40 H2FR	40	40	20	9	6.6	400	16	11
50 H2FR	50	50	30	10	5.8	400	15	16
65 H2FR	65	65	50	11	10	400 800	10 40	21
80 H2FR	80	80	80	13	6.7	400 800	10 40	38

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve	Cooling	Suitable
Temperature	Unit	for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the regulating valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions											
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)				
20 H2FR	150	63	112	105	18	75	14x(4)				
25 H2FR	160	70	117	115	18	85	14x(4)				
32 H2FR	180	75	151	140	18	100	18x(4)				
40 H2FR	200	85	155	150	18	110	18x(4)				
50 H2FR	230	95	169	165	20	125	18x(4)				
65 H2FR	290	110	180	185	22	145	18x(8)				
80 H2FR	310	155	195	200	24	160	18x(8)				

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way control valves type H2FR, Cast steel PN 25, DN 100 – 150 mm / PN 16, DN 150 mm, Reverse acting

2.4.10-G GB-1

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- · Double seated
- Reverse acting (normally closed)
- · For cooling water and lubrications

Applications

Valves type H2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature- or pressure differential regulators.

As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, $\Delta p_{_{\rm I}},$ against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

Please find below the max. allowable values of Δp_1 as well as the max. allowable inlet pressures for opening the valves, p_{1max} for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The linear characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

Matariala	
Value hedu	Cost staal
- valve body	Cast steel
	GP240GH
	(GS-C25)
- Trim	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 25
Seating	Double seated
Flow characteristic	Almost quadratic
Regulating capability	$y \frac{k_{vs}}{k_{vr}} > 25$
Function	Opening with
	pressure on spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges	EN 1092-1 PN 25
Counter flanges	DIN 2635 / DS625
Colour	Green

Note: All Clorius valves are approved in accordance to the Pressure Equipment Directive (PED). Valve type 150 H2FR in only approved for nominal pressure PN 16, but for applications not effected by the PED, valve type 150 H2FR can be delivered for nominal pressure PN 25.

Specifications										
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _∟ bar	Actuat. force N	Weight kg			
100 H2FR	100	100	125	20	12.1	800	39			
125 H2FR	125	125	215	20	9	800	73			
150 H2FR	150	150	310	20	7.5	800	76			

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_{v} , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 350°C	KS-5	Thermostats
250°C - 350°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions											
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)				
100 H2FR	350	145	240	220	24	190	23x8				
125 H2FR	400	180	290	250	26	220	27x8				
150 H2FR	400	180	290	285	28	250	27x8				

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type G1F Nodular cast iron, PN 25, DN 15/4 – 50 mm

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 Single-seated, tight closing
- Quadratic characteristic

Applications

Control valves type G1F are designed for regulating hot water, steam and hot oil systems.

The valves are used in conjunction with our temperature or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat and cone - are made of stainless steel.

The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The thread for the actuator connection is G1B ISO 228.

The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

	Materials:	Nodular cast iron
	- valve body	EN-GJS-400-15
	- Components	Stainless steel
	- Nuts, bolts	24 CrMo 4/A4
	Nominal pressure	PN 25
	Seating	Single-seated
	Valve characteristic	Quadratic
gnt	Regulating capability	$\frac{k_{\rm vs}}{k_{\rm vr}} > 25$
, ר	Leakage rate	\leq 0.05% of k_{vs}
, ,	Temperature range	See pressure/tem
1		perature diagram
1	Mounting	See page 2
1	Flanges drilled	
1	according to	EN 1092-2 or
2		ANSI B16.5
5		Class 150
1	Colour	Blue
7		
~		

Subject to changes without notice.

Specifications Flange connection Opening kvs-value Lifting height Weight Туре DN in mm m³/h mm mm kg 3.0 15/4 G1F 15 4 0.20 6 3.0 15/6 G1F 15 6 0.45 6 15/9 G1F 15 9 0.95 6 3. 3. 15/12 G1F 15 12 1.7 6 3. 15 G1F 15 2.75 6 15 20 G1F 20 20 5 6.5 4.: 5.5 25 G1F 25 25 7.5 7 8. 32 G1F 32 32 12.5 8 9. 40 40 20 9 40 G1F 50 G1F 50 50 30 10 14.0

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	Valve Motors

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions											
						EN-109	92-2	ANSI	ANSI B16.5 Class 150		
Туре	L	H1	H2	b	D (dia.)	k (dia.)	d mm	D (dia.)	k (dia.)	d mm	
	mm	mm	mm	mm	mm	(ula.) mm	(number)	mm	(ula.) mm	(number)	
15/4 G1F	130	80	60	14	95	65	14x(4)	89	61	16x(4)	
15/6 G1F	130	80	60	14	95	65	14x(4)	89	61	16x(4)	
15/9 G1F	130	80	60	14	95	65	14x(4)	89	61	16x(4)	
15/12 G1F	130	80	60	14	95	65	14x(4)	89	61	16x(4)	
15 G1F	130	80	60	14	95	65	14x(4)	89	61	16x(4)	
20 G1F	150	85	65	16	105	75	14x(4)	98	70	16x(4)	
25 G1F	160	95	70	16	115	85	14x(4)	108	79	16x(4)	
32 G1F	180	105	75	18	140	100	18x(4)	118	89	16x(4)	
40 G1F	200	110	85	18	150	110	18x(4)	127	98	16x(4)	
50 G1F	230	125	95	20	165	125	18x(4)	153	121	19x(4)	

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Balanced 2-way Control Valves type G1FB Nodular cast iron, PN 25, DN 25 – 65 mm

2.5.03-Е GB-1

Characteristics

- Nominal pressure PN 25
- Pressure balanced valve
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25
- Single-seated, tight closure
- · Quadratic characteristic

Applications

Balanced control valves type G1FB are designed for regulating hot water, steam and hot oil systems.

Balanced valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a standard single seated valve, and where the leakage rate for a double-seated valve is unacceptable.

The valves are used in conjunction with our temperature- or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat, cone and bellow - are made of stainless steel.

The bellows for balancing the pressure are fitted on the valve spindle which reduces the force necessary for closing the valve, as the upstream pressure of the medium through the hollow valve spindle acts outside and the pressure after the valve acts inside the bellow system. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The thread for the actuator connection is G1B ISO 228. The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in open position by means of a spring and the bellow system. With pressure on the spindle the valve will close. In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting double-seated valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

Materials:	
- Valve body	Nodular Cast iron
	EN-GJS-400-15
- Components	Stainless steel
- Nuts, bolts	24 CrMo 5/A4
Nominal pressure	PN 25
Seating	Single-seated
Valve characteristic	Quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}}$ > 25
Leakage	\leq 0.05% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges	EN 1092-2 PN 25
Colour	Blue

Specifications						
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg	
25 G1FB	25	25	7.5	7	6	
32 G1FB	32	32	12.5	8	9	
40 G1FB	40	40	20	9	13	
50 G1FB	50	50	30	10	16	
65 G1FB	65	65	50	13	23	

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve temperature	Cooling unit	Suitable for	
170°C - 250°C	KS-4	All actuators	
250°C - 300°C	KS-5	Thermostats	
250°C - 300°C	KS-6	Valve Motors	

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the motor / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions							
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
25 G1FB	160	180	70	115	16	85	14x(4)
32 G1FB	180	195	75	140	18	100	18x(4)
40 G1FB	200	205	85	150	19	110	18x(4)
50 G1FB	230	225	95	165	19	125	18x(4)
65 G1FB	290	260	110	185	19	145	18x(8)

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Balanced 2-way Control Valves type G1FBN Nodular cast iron, PN 25, DN 15 – 80 mm

Characteristics

- Nominal pressure PN 25
- Pressure balanced valve
- Regulating capability $\frac{k_{VS}}{k_{VT}} > 25$
- Single-seated, balanced
- Quadratic characteristic

Applications

Balanced control valves type G1FBN are designed for regulating hot water, steam and hot oil systems.

Balanced valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a standard single seated valve, and where the leakage rate for a double-seated valve is unacceptable.

The valves are used in conjunction with our temperature- or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seat, cone - are made of stainless steel.

The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The thread for the actuator connection is G1B ISO 228.

The valves are single-seated and designed for tight closure. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in open position by means of a spring. With force on the spindle the valve will close.

In connection with our thermostats or electric actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting double-seated valve can be used.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

- Materials:
- Valve body
- Components
- Nuts, bolts Nominal pressure

Seating

Stainless steel 24 CrMo 5/A4 PN 25 Single-seated

Nodular Cast iron

EN-GJS-400-15

Valve characteristic	Quadratic
Regulating capability	$\frac{K_{VS}}{K_{Vr}}$ > 25
Leakage	$\leq 0.05\%$ of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Flanges drilled	
according to	EN 1092-2 PN 25
	or ANSI B16.5
	Class 150
Colour	Blue

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve	Cooling	Suitable	
Temperature	Unit	for	
170°C - 250°C	KS-4	All actuators	
250°C - 300°C	KS-5	Thermostats	
250°C - 300°C	KS-6	FL actuators	

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to changes without notice.

Balanced 2-way Control Valves type G1FBN Nodular cast iron, PN 25, DN 15 – 80 mm

GB-2

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Dimensioning

Тура	Water / Steam			Т	Thermostats			ctuators	Pressure differential controllers	
Type		water / Steam			V4	V8	V / AV	VB / VBA	TD66-4	TD66-8
	Water:	$\Delta p_L \& max. p_1$	bar							
13011 BN	Steam:	$\Delta p_L \& max. p_1$	bar							
20 C1ERN	Water:	∆p _L & max. p ₁	bar							
20 0 11 010	Steam:	$\Delta p_1 \& max. p_1$	bar	16	16		16		16	
25 G1FBN	Water:	∆p _L & max. p ₁	bar	10				16	10	
	Steam:	∆p _L & max. p ₁	bar							
	Water:	∆p _L & max. p ₁	bar							
52 G II BN	Steam:	∆p _L & max. p ₁	bar			16				16
	Water:	∆p _L & max. p ₁	bar	-	10				10	
40 GIFBN	Steam:	$\Delta p_L \& max. p_1$	bar	-	9]			9	
50 C1EDN	Water:	∆p _L & max. p ₁	bar	-	9]			9	
50 GIFBN	Steam:	∆p _i & max. p ₁	bar	-	8]			8	
	Water:	∆p _L & max. p ₁	bar	-	7]		-	8	
65 GTFBN	Steam:	∆p _L & max. p ₁	bar	-	6]		-	7	
80 G1FBN	Water:	$\Delta p_L \& max. p_1$	bar	-	5]		-	5	
	Steam:	$\Delta p_L \& max. p_1$	bar	-	4			-	4	

p₁ = absolute pressure

Subject to changes without notice.

Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Clorius Controls A/S

Dimensions											
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)				
15 G1FBN	130	101	80	95	14	65	14x(4)				
20 G1FBN	150	107	85	105	16	75	14x(4)				
25 G1FBN	160	112	70	115	16	85	14x(4)				
32 G1FBN	180	122	75	140	18	100	18x(4)				
40 G1FBN	200	125	85	150	19	110	18x(4)				
50 G1FBN	230	140	95	165	19	125	18x(4)				
65 G1FBN	290	154	110	185	19	145	18x(8)				
80 G1FBN	310	164	115	200	19	160	19x(8)				

2-way Control Valves type G2F Nodular cast iron, 2 seats, PN 25, DN 20 – 80 mm, Flanged ends

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k} > 25$
- Double-seated
- Adjustable seat interspace
- · Quadratic characteristic

Applications

Control valves type G2F are designed for regulating hot water, steam and hot oil systems.

The double-seated valves are used in installations where the system pressure necessitates a closing force greater than available in the actuator programme for a single-seated valve.

The valves are used in conjunction with our temperature or pressure differential regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The thread for the actuator connection is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials:

- Valve body

- Components

- Nuts, bolts Nominal pressure

Seating

Valve characteristic

Regulating capability

Leakage rate Temperature range

Mounting

Flanges drilled according to Counter flanges Colour 24 CrMo 5/A4 PN 25 Double-seated Quadratic $\frac{k_{vs}}{k_{vr}} > 25 \le 0.5\%$ of k_{vs} See pressure/temperature diagram See page 2

Nodular cast iron

EN-GJS-400-15

Stainless steel

EN 1092-2 PN 25 DIN 2634 Blue

Specifications											
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg						
20 G2F	20	20	5	6.5	5						
25 G2F	25	25	7.5	7	6.5						
32 G2F	32	32	12.5	8	9						
40 G2F	40	40	20	9	11						
50 G2F	50	50	30	10	16						
65 G2F	65	65	50	11	21						
80 G2F	80	80	80	13	38						

Subject to changes without notice.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

2.5.04-F

GB-1

Dimension sketch

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve temperature	Cooling unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	Valve Motors

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

|--|

Dimension	S						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
20 G2F	150	85	70	105	16	75	14x(4)
25 G2F	160	95	77	115	16	85	14x(4)
32 G2F	180	105	82	140	18	100	19x(4)
40 G2F	200	110	92	150	19	110	19x(4)
50 G2F	230	125	102	165	19	125	19x(4)
65 G2F	290	135	120	185	19	145	19x(8)
80 G2F	310	145	130	200	19	160	19x(8)

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2

2-way Control Valves type G2F Nodular cast iron, PN 16, DN 100 – 150 mm

Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{VS}}{k_{VT}} > 25$
- Double seated
- Characteristic almost quadratic

Applications

Control valves type G2F are designed for use in regulating high pressure hot water, steam and heat transfer oil.

The valves are used in conjunction with temperature or pressure differential regulators for controlling district or central heating plants, industrial processes or marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" data sheet no. 9.0.00.

Design

The valve components – spindle, seats and cone – are made of stainless steel. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats or electronic actuators, the valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials:	
- Valve body	Nodular cast iron
	EN-GJS-400-15
- Components	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	Double seated
Valve characteristic	Almost quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}} > 25$
Function	Closing with pres-
	sure on spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges drilled accor	ding to EN 1092-2
Counter flanges	DIN 2633
Colour	Blue

Specification											
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg						
100 G2F	100	100	125	20	32						
125 G2F	125	125	215	20	50						
150 G2F	150	150	310	20	70						

Subject to change without notice.

2-way Control Valves type G2F Nodular cast iron, PN 16, DN 100 – 150 mm

GB-2

Definition of k_{vs}-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, $\Delta p_{v'}$ of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve	Cooling	Suitable
temperature	unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions	5						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
100 G2F	350	185	209	220	19	180	19x(8)
125 G2F	400	205	224	250	19	210	19x(8)
150 G2F	400	240	244	285	19	240	23x(8)

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type G2FM-T 2.5.05.01-D Nodular cast iron, PN 16, DN 150 - 300 / PN 10, DN 350 - 600 mm

Characteristics

- Nominal pressure DN 150-300 mm: PN 16, max. 100°C (option 250°C) DN 350-600 mm: PN 10, max. 100°C (option 250°C)
- Slide in Nodular cast iron

Applications

Control valve type G2FM-T is a three-way control valve with blocked port making a two-way control valve. The slide for guarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil quantities.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

Specifications

Туре

150 G2FM-T

200 G2FM-T

250 G2FM-T

300 G2FM-T

350 G2FM-T

400 G2FM-T

450 G2FM-T

500 G2FM-T

600 G2FM-T

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{G(m^{3} / h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^{3} / h)}{k_{vs}}\right)$$

Flange connection

DN in mm

150

200

250

300

350

400

450

500

600

k_{vs}-value

m³/h

425

1100

1800

2450

3350

3850

4300

5050

6020

Design

The valve body and the valve slide are made of nodular cast iron. The valve flanges are drilled according to EN 1092-2 or ANSI Class 150.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one extreme position by turning the spindle, connection A-AB is kept fully open. In the other extreme position connection the valve is fully closed. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Torque

Nm

135

330

450

700

780

880

1250

1450

1750

Weight

kg

90

135

190

262

324

403

507

645

890

Technical data

Materials:	
 Valve body, slide 	Nodular cast iron
	EN-GJS-400-15
- O-ring	NBR 70A
Nominal pressure:	
- DN 150-300	PN 16
- DN 350-600	PN 10
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Max. 100°C
	(option 250°C)
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/16
Counter flanges	ANSI Class 150
(suggested)	DIN 2632 - PN 10
	DIN 2633 – PN 16
Max. pressure Δp_L , a	igainst which the
control can close:	
- DN 150-300	16 bar
- DN 350-600	10 bar

Subject to change without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-1

2-way Control Valves type G2FM-T 2 Nodular cast iron, PN 16, DN 150 – 300 / PN 10, DN 350 – 600 mm

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A and AB.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions

							E	EN 10	92-2	AN	SI Cla	iss 150
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)
150 G2FM-T	438	250	196	139	250	276	290	240	23x (8)	280	241	22x (8)
200 G2FM-T	530	306	236	175	21	361	340	295	23x(12)	343	299	23x(8)
250 G2FM-T	592	340	273	205	23	361	400	355	28x(12)	407	362	26x(12)
300 G2FM-T	649	371	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)
350 G2FM-T	717	403	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)
400 G2FM-T	770	430	375	285	26	361	565	515	28x(16)	597	540	29x(16)
450 G2FM-T	820	457	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)
500 G2FM-T	900	499	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)
600 G2FM-T	1000	553	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)

Subject to change without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

2.5.05.01-D

GB-2

lorius

2-way Control Valves type G2F, G3F w/ blind flange on port 3 2.5.05.02-A Nodular cast iron, PN 16, DN 80 – 150 mm GB-1

Characteristics

- Nominal pressure PN 16
- Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- For regulating of process- and central heating plants

Applications

Control valves type G2F are designed for regulating of water, lubricating oil and other liquid media.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Specification										
Туре	Flange connection DN in mm	Opening mm	Mixing valve k _{vs} -value m³/h	Lifting height mm	Weight kg					
80 G2F	80	80	80	11	35					
100 G2F	100	100	125	13	44					
125 G2F	125	125	215	18	72					
150 G2F	150	150	310	20	111					

Clorius

Design

The valve components - seats and cone - are made of gun metal, the spindle is made of stainless steel.

The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The connection thread for the actuator is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure.

The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being installed, connection 2-1 is fully open by means of a spring.

When the spindle is pressed to the bottom, connection 2-1 is completely closed.

Technical data

Materials:

- Valve body

- Seats and cone

- Spindle

Nominal pressure Seating

Valve characteristic Temperature range

Mounting Flanges drilled according to Nodular cast iron EN-GJS-400-15 Gun metal RG 5 CuSn5Zn5Pb5-C stainless steel (W.no. 1.4436) PN 16 Two balanced single seats Almost linear Max. 120°C (160°C option) See page 2

EN 1092-2 PN 16 or ANSI B16.5 Class 150 DIN 2633 Blue

Counter flanges Colour

Subject to changes without notice.

2-way Control Valves type G2F, G3F w/ blade flange on port 3 2.5.05.02-A Nodular cast iron, PN 16, DN 80 – 150 mm GB-2

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
80 G2F	310	155	180	127	200	19	160	19x(8)
100 G2F	350	175	195	141	220	19	180	19x(8)
125 G2F	400	240	245	171	250	19	210	19x(8)
150 G2F	480	270	280	189	285	24	240	23x(8)

2-way Control Valves type G2FA

Nodular cast iron, PN 16, DN 200 mm / PN 10, DN 300/250 - 300 mm

Characteristics

 Nominal pressure 200 G2FA: PN 16 max.120/160°C 300/250-300 G2FA:

PN 10 max.120/160°C

- Regulating capability $\frac{k_{VS}}{k_{Vr}} > 25$
- Double seated

Applications

Regulating valve type G2FA is designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations. Is used in conjunction with Clorius valve motor type AVM/AVF 234 or Clorius pneumatic actuators.

Dimensioning

For sizing of control valves the following equation can be used:

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of nodular cast iron and the valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The valve cone is firmly connected with the motor spindle. The valves will close at rising temperatures. For cooling circuits a reverse acting valve can be used. The linear characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical Data

Matariala	
Materials:	
- valve body	Nodular cast iron
- ·	EN-GJS-400-15
- Trim	Gun metal RG 5
	CuSh5Zh5Pb5-C
- Valve spindle	Stainless steel
	(W.no. 1.4436)
Nominal pressure:	
200 G2FA	PN 16
	(max. 120/160°C)
300/250-300 G2FA	PN 10
	(max. 120/160°C)
Seating	Double seated
Valve characteristic	Almost linear
Leakage	≤ 0.5%
Temperature range	Max. 120°C/160°C
Mounting	See page 2
Flanges	According to
	EN 1092-2,
	PN 16 & PN 10
Note !	300/250 G2FA has
	outer measures
	and flanges drilled
	as a 300 G2FA
Counter flanges:	
200 G2FA	DIN 2633 - PN 16
300/250-300 G2FA	DIN 2632 - PN 10

Specifications										
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Weight kg					
200 G2FA	200	200	555	28	160					
300/250 G2FA1) 300	300	865	28	311					
300 G2FA	300	300	1250	45	300					

¹⁾ Valve type 300/250 G2FA has outer measures and flanges drilled as type 300 G2FA.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Subject to change without notice.

2.5.05.03-A

GB-1

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δpv , of 1 bar.

Mounting

The valves must always be mounted with vertical spindle, preferable with the motor connection over the valve. Besides, the valve should be mounted so that the valve motor is exposed to a minimum of moisture and unnecessary vibrations.

Free height above/below the valve must be minimum 400 mm for mounting and operating of the AVM/AVF 234 motor, otherwise minimum 745 mm for pneumatic actuators.

Strainer

It is recommended to use a strainer in front of the regulating valve if the liquid contains suspended particles.

Subject to change without notice.

Туре	L mm	L1 mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
200 G2FA	600	380	238	238	26	340	295	22 x (8)
300/250 G2FA ¹⁾	850	510	305	305	28	445	400	23 x (12)
300 G2FA	850	510	305	305	28	445	400	23 x (12)

¹⁾ Valve type 300/250 G2FA has outer measures and flanges drilled as type 300 G2FA.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-2

2-way Control Valves type G2FR Nodular cast iron, PN 25, DN 20 – 80 mm, Reverse acting

2.5.06-F

GB-1

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25 Reverse acting (normally closed)
- · For cooling systems or similar
- · Adjustable seats

Applications

Valves type G2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature or pressure differential regulators.

As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, Δp_{I} , against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

Please find below the max. allowable values of Δp_1 as well as the max. allowable inlet pressures for opening the valves, p_{1max} , for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges according to EN 1092-2. The thread for the actuator connection is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

Materials: - Valve body - Trim - Nuts, bolts Nominal pressure Seating Flow characteristic Regulating capability k_{vr} Function Leakage Temperature range Mounting Flanges Counter flanges Colour Blue

Nodular Cast iron EN-GJS-400-15 Stainless steel 24 CrMo 5/A4 PN 25 Double-seated Quadratic <u>k_{vs}</u> > 25 Opening with pressure on spindle ≤ 0.5% of k_{vs} See pressure/temperature diagram See page 2 EN 1092-2 PN 25 DIN 2634

Subject to changes without notice.

Specifica	itions							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _v bar	Actuat. force N	Corresp. p _{1max} bar	Weight kg
20 G2FR	20	20	5	6.5	8.3	200 400	9.4 25	5
25 G2FR	25	25	7.5	7	8	200 400	8.8 25	6.5
32 G2FR	32	32	12.5	8	7	400	27	9
40 G2FR	40	40	20	9	6.6	400	26	11
50 G2FR	50	50	30	10	5.8	400	15	16
65 G2FR	65	65	50	11	10	400 800	10 16	21
80 G2FR	80	80	80	13	6.7	400 800	10 16	38

2-way Control Valves type G2FR Nodular cast iron, PN 25, DN 20 – 80 mm, Reverse acting

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve	Cooling	Suitable
temperature	unit	for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	Valve Motors

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the motor / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension	S						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
20 G2FR	150	63	112	105	16	75	14x(4)
25 G2FR	160	70	117	115	16	85	14x(4)
32 G2FR	180	75	151	140	18	100	19x(4)
40 G2FR	200	85	155	150	19	110	19x(4)
50 G2FR	230	95	169	165	19	125	19x(4)
65 G2FR	290	110	180	185	19	145	19x(8)
80 G2FR	310	120	180	200	19	160	19x(8)

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or valve motor (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

2-way Control Valves type G2FR Nodular cast iron, PN 16, DN 100 – 150 mm, Reverse acting

2.5.07-E GB-1

Characteristics

- · Nominal pressure PN 16
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- · Double seated
- Reverse acting (normally closed)
- · For cooling water and lubrications

Applications

Valves type G2FR are mainly intended for control of cooling systems.

The valves are used in conjunction with temperature- or pressure differential regulators.

As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure, Δp_{I} , against which a valve can close depends on the spring and when opening the valve, the actuator has to overcome the spring force.

Please find below the max. allowable values of Δp_1 as well as the max. allowable inlet pressures for opening the valves, p_{1max} for various actuator forces.

Dimensioning

For sizing of control valves, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2. The connection thread for the actuator is G1B ISO 228. The valves are double-seated and designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens.

In connection with our thermostats, the valves act as "cooling" valves, i.e. they open at rising temperatures.

The linear characteristic will not cease until the flow has dropped below 4% of the full flow.

Technical data

Materials:	
- Valve body	Nodular cast iron
	EN-GJS-400-15
- Trim	Stainless steel
- Bolts, nuts	24 CrMo 4/A4
Nominal pressure	PN 16
Seating	Double seated
Flow characteristic	Almost quadratic
Regulating capability	$\frac{k_{vs}}{k_{vr}} > 25$
Function	Opening with
	pressure on spindle
Leakage rate	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges	EN 1092-2 PN 16
Counter flanges	DIN 2633
Colour	Blue

Specifica	Specifications										
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value m³/h	Lifting height mm	Max. ∆p _∟ bar	Actuat. force N	Weight kg				
100 G2FR	100	100	125	20	12.1	800	39				
125 G2FR	125	125	215	20	9	800	53				
150 G2FR	150	150	310	20	7.5	800	73				

Subject to changes without notice.

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with electric actuator/ thermostat downwards, and according to the following instructions:

Valve Temperature	Cooling Unit	Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 300°C	KS-5	Thermostats
250°C - 300°C	KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual Adjusting Device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator / thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensions	5						
Туре	L mm	H1 mm	H2 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
100 G2FR	350	145	240	220	24	180	18x(8)
125 G2FR	400	160	260	250	26	210	18x(8)
150 G2FR	400	180	293	285	26	240	22x(8)

Cooling Unit KS-5

Cooling Unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

3-way Control Valves type G3F, Nodular cast iron PN 25, DN 20 – 65 mm, Flanged ends

2.5.08-l

GB-1

Characteristics

- Nominal pressure PN 25
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25
- Same k_{vs}-value as mixing and diverting valve
- Quadratic / linear characteristic

Applications

Control valves type G3F are designed for hot water and hot oil systems and can be installed in pipe systems as mixing or diverting valves.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district or central heating plants or marine installations.

Dimensioning

For sizing of control valves and selection of actuators, please see "Quick Choice" leaflet no. 9.0.00.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2.

The thread for the actuator connection is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

Valves type G3F are marked with the internationally recognized port designations: A, B, AB.

Port AB common port always open Port A closes by activating the spindle Port B opens by activating the spindle

Specifica	ation				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value* m³/h	Lifting height mm	Weight kg
20 G3F	20	20	6.3	7.5	6
25 G3F	25	25	10	9	7
32 G3F	32	32	16	10	10
40 G3F	40	40	25	11	14
50 G3F	50	50	38	11.5	18
65 G3F	65	65	63	14.5	26

* Same k_{vs}-values for mixing and diverting valves

Subject to changes without notice.

Clorius Controls A/S Tempovej 27 · DK-2750 Ballerup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Function

Without an actuator being installed, connection A-AB is fully open and connection B-AB completely closed, by means of a spring.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection B-AB is fully open and connection A-AB completely closed.

The valve characteristics are as follows: Port A-AB and AB-A: quadratic

Port B-AB and AB-B: almost linear These characteristics ensure constant total flow under almost all pressure conditions and optimum circulation in the individual circuits.

Technical Data

Materials:	
 Valve body 	Nodular cast iron
	EN-GJS-400-15
 Components 	Stainless steel
- Nuts, bolts	24 CrMo 5/A4
Nominal pressure	PN 25
Seating	2 balanced single
	seats
Valve characteristic	Quadratic / linear
Regulating capability	$\frac{k_{vs}}{k_{vr}} > 25$
Leakage	\leq 0.5% of k _{vs}
Temperature range	See pressure/tem-
	perature diagram
Mounting	See page 2
Flanges - drilled	
according to	EN 1092-2 PN 25
Counter flanges	DIN 2634
Colour	Blue

Definition of kys-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS has to be applied. It must then be installed with actuator/ thermostats downwards, and according to the following instructions:

Valve temperature	Cooling unit	g Suitable for
170°C - 250°C	KS-4	All actuators
250°C - 300°C 250°C - 300°C	KS-5 KS-6	El. actuators

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories

Manual adjusting device

The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction.

Cooling unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimensior	Dimensions										
Туре	L mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)				
20 G3F	150	115	63	105	16	75	14x(4)				
25 G3F	160	130	70	115	16	85	14x(4)				
32 G3F	180	150	75	140	18	100	18x(4)				
40 G3F	200	160	85	150	18	110	18x(4)				
50 G3F	230	190	95	165	20	125	18x(4)				
65 G3F	290	220	110	185	20	145	18x(8)				

Cooling unit KS-5

Cooling unit KS-6

Cooling units with built-in bellow glands, replacing stuffing box of thermostat (KS-5) or electric valve actuator (KS-6). Must be applied at valve temperatures above 250°C.

Subject to changes without notice.

3-way Control Valves type G3F Nodular cast iron, PN 16, DN 80 – 150 mm

GB-1

Characteristics

- Nominal pressure PN 16
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ - > 25
- · For regulating of process- and central heating plants

Applications

Control valves type G3F are designed for regulating of water, lubricating oil and other liquid media and can be mounted in the pipe system as either mixing or diverting valves. However when mounting as a diverting valve the pressure drop is increased, compared with mounting as a mixing valve. See "Important note" on page 2.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Specification

Des	sign

The valve components - seats and cone - are made of gun metal, the spindle is made of stainless steel.

The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The connection thread for the actuator is G1B ISO 228.

The valves have two balanced single seats and are designed for tight closure

The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174). Tight between port 1(AB) og 3(B) is optional.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type G3F are marked with the figures 1, 2 and 3.

The letters in parentheses refer to the corresponding internationally adapted designations.

2 (A) 1 (AB) 3 (B)

Function

Without an actuator being installed, connection 2-1 is fully open and connection 3-1 completely closed, by means of a sprina.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection 3-1 is fully open and connection 2-1 completely closed.

Technical data

Materials:	
- Valve body	Nodular cast iron EN-GJS-400-15
- Seats and cone	Gun metal RG 5 CuSn5Zn5Pb5-C
- Spindle	stainless steel
Nominal pressure Seating	PN 16 Two balanced single seats
Valve characteristic Temperature range	Almost linear Max. 120°C (160°C option)
Mounting Flanges drilled	See page 2
according to	EN 1092-2 PN 16 or ANSI B16.5 Class 150
Counter flanges Colour	DIN 2633 Blue

•						
Туре	Flange connection DN in mm	Opening mm	Mixing valve k _{vs} -value m³/h	Diverting valve k _{vs} -value m³/h	Lifting height mm	Weight kg
80 G3F	80	80	80	69	11	35
100 G3F	100	100	125	108	13	44
125 G3F	125	125	215	185	18	72
150 G3F	150	150	310	267	20	111

Subject to changes without notice.

GB-2

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Free height above / below the valve must be minimum 645 mm for mounting and operation of the MT90 Marine motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
80 G3F	310	155	180	127	200	19	160	19x(8)
100 G3F	350	175	195	141	220	19	180	19x(8)
125 G3F	400	240	245	171	250	19	210	19x(8)
150 G3F	480	270	280	189	285	24	240	23x(8)

3-way Control Valves type G3F-I (Ports A-AB interchanged) 2.5.09.01-A Nodular cast iron, PN 16, DN 80 – 150 mm GB-1

Characteristics

- Nominal pressure PN 16
- · Characteristic almost linear
- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- · For regulating of process- and central heating plants

Applications

Control valves type G3F-I are designed for regulating of water, lubricating oil and other liquid media and can be mounted in the pipe system as either mixing or diverting valves. However when mounting as a diverting valve the pressure drop is increased, compared with mounting as a mixing valve. See "Important note" on page 2.

The valves are used in conjunction with our temperature regulators for controlling industrial processes, district and central heating plants and marine installations.

Dimensioning

For sizing of control valves and selection of actuators please see "Quick Choice" leaflet no. 9.0.00.

Specification

L)es	Ig	n
_			

The valve components - seats and cone - are made of gun metal, the spindle is made of stainless steel.

The valve body is made of nodular cast iron EN-GJS-400-15 with flanges drilled according to EN 1092-2 or ANSI B16.5 Class 150. The connection thread for the actuator is G1B ISO 228.

The valves have two balanced single seats and are designed for tight clo-SUIRE

The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174). Tight between port 1(AB) og 3(B) is optional.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type G3F-I are marked with the figures 1, 2 and 3.

The letters in parentheses refer to the corresponding internationally adapted designations.

Function

Without an actuator being installed, connection 2-1 is fully open and connection 3-1 completely closed, by means of a sprina.

By increasing pressure on the spindle, the opening of the ports changes proportionally to the travel of the spindle, and when the spindle is pressed to the bottom, connection 3-1 is fully open and connection 2-1 completely closed.

Technical data

Materials:	
- Valve body	Nodular cast iron
- Seats and cone	Gun metal RG 5
- Spindle	stainless steel
Nominal pressure	PN 16
Seating	Two balanced single seats
Valve characteristic	Almost linear
Temperature range	Max. 120°C
•• //	(160°C option)
Mounting	See page 2
Flanges drilled	
according to	EN 1092-2 PN 16
	or ANSI B16.5
	Class 150
Counter flanges	DIN 2633
Colour	Blue

•••••						
Туре	Flange connection DN in mm	Opening	Mixing valve k _{vs} -value m³/h	Diverting valve k _{vs} -value m³/h	Lifting height mm	Weight ka
		00		0.0		
80 G3F-I	80	80	80	69		35
100 G3F-I	100	100	125	108	13	44
125 G3F-I	125	125	215	185	18	72
150 G3F-I	150	150	310	267	20	111

Subject to changes without notice.

3-way Control Valves type G3F-I (Ports A-AB interchanged) 2.5.09.01-A Nodular cast iron, PN 16, DN 80 – 150 mm GB-2

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Free height above / below the valve must be minimum 645 mm for mounting and operation of the MT90 Marine motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Accessories Manual adjusting device

The device has a built-in stuffing box. For tightening and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Subject to changes without notice.

Туре	L mm	L1 mm	H mm	H1 mm	D (dia.) mm	b mm	k (dia.) mm	d mm dia. (number)
80 G3F-I	310	155	180	127	200	19	160	19x(8)
100 G3F-I	350	175	195	141	220	19	180	19x(8)
125 G3F-I	400	240	245	171	250	19	210	19x(8)
150 G3F-I	480	270	280	189	285	24	240	23x(8)

3-WAY CONTROL VALVES TYPE Low Leakage

NODULAR CAST IRON, DN 80 - 300 mm

PRESSURE/TEMPERATURE DIAGRAM

SPECIFICATIONS

CHARACTERISTICS

Nominal pressure
 DN 80-200

PN 16 max. 150°C

DN 80-300/250

DN 300/250

PN 10 max. 150°C JIS 10K (option)

- Regulating capability $\frac{k_{vs}}{k_{vr}} > 25$
- Two balanced single seats
- Soft seat with O-ring
- Leakage class IV

APPLICATIONS

Control valves type Low Leakage are designed for regulating of load dependant cylinder liner (LDCL), cooling water systems.

DESIGN

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of nodular cast iron and the valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

The valve has two balanced single seats and the port AB-B is designed 100 % tight.

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

DN	Flange connection DN in mm	Opening mm	k <mark>vs-value</mark> m ³ /h	Lifting height mm	Weight kg
80	80	80	80	11	35
100	100	100	125	13	44
125	125	125	215	18	72
150	150	150	310	22	111
200/175	200	200	425	23	165
200	200	200	555	29	160
300/250	300	300	865	31	306
300	300	300	1250	45	306

¹⁾ The stated ^kvs values apply for mixing valves. Diverting valves: 0.86 x (^kvs -values for mixing valves)

3-WAY CONTROL VALVES TYPE Low Leakage

NODULAR CAST IRON, DN 80 - 300 mm

PORT NUMBERING

The ports of valves type Low Leakage are marked with the letters AB, A and B.

The letters in parentheses refer to the corresponding internationally adapted designations.

PORT AB (1)	common port always open	
Port A (2)	closes at load on spindle	
Port B (3)	opens at load on spindle	

FUNCTION

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection A-AB is kept fully open and connection B-AB is fully closed.

In the other extreme position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change propertionally.

MOUNTING

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture.

Free hight above/below the valve must be minimum 700 mm for mounting and operation of the pneumatic actuator.

TECHNICAL DATA

Materials:		
- Valve body	Nodular cast iron	
	EN-GJS-400-15	
- Trim	Gun metal RG 5	
	CuSn5Zn5Pb5-C	
- Valve spindle	Stainless steel	
	(W.no. 1.4436)	
Nominal pressure		
DN 80-200		PN 16 (max.150°C)
DN 300/250-300		PN 10 (max.150°C)
DN 80-300		JIS 10K (option)
Seats	2 balanced single seats	
Valve characteristic	Almost linear	
Leakage Port AB-B	0.0%	
Temperature range	Max. 150°C	
Mounting	See below	
Flanges	According to EN 1092-2,	
	PN 16 & PN 10	
- option: Acc	ording to JIS B 2210 10K	
Note !	Valve DN	200/175 has outer
	measures ar	nd flanges drilled as
		valve DN 200.
	Valve DN	300/250 has outer
	measures ar	nd flanges drilled as
		valve DN 300.
Counter flanges (su	ggested for EN 1092-2)	
DN 80-200:		DIN 2633 – PN 16
DN 300/250-300:		DIN 2632 – PN 10

DEFINITION OF KVS-VALUE

The $k_{vs}\text{-value}$ is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to changes without notice.

3-WAY CONTROL VALVES TYPE Low Leakage 2.5.14-A

NODULAR CAST IRON, DN 80 - 300 mm

DIMENS	IONS							EN 1092-2			JIS B 2210	10K
DN	L	L1	L2	н	H1	Ь	D (dia.)	k (dia.)	d mm dia.	D (dia.)	k (dia.)	d mm dia.
	mm	mm	mm	mm	mm	mm	mm	mm	(number)	mm	mm	(number)
80	310	155	102	117	127	19	200	160	19x(8)	185	150	19x(8)
100	350	175	112	132	141	19	220	180	19x(8)	210	175	19x(8)
125	400	240	138	181	171	19	250	210	19x(8)	250	210	23x(8)
150	480	270	165	216	189	24	285	240	23x(8)	280	240	23x(8)
200/175	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
200	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
300/250	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)
300	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)

THE VALVE SET:

he valve set for LDCL cooling water systems:							
Consists of:	3 way control valve type MAN Low Leakage: 300.01-B						
	Pneumatic actuator:	301.01-A					
	Filter regulator:	6.08.01-C					
	Positioner:	Siemens SIPART PS2					

3-WAY THERMOSTATIC VALVE TYPE G3FSI

NODULAR CAST IRON, DN 50 - 150 mm,

TYPICAL APPLICATIONS - MARINE/OFFSHORE/POWER GENERATION Engines - lube oil, high and low temperature water, fresh water. Compressors and Gearboxes - lube oil Heat Recovery and Fresh Water Generators - water circuits

DIMENSIONING

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{\Omega(m^{3}/h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{\Omega(m^{3}/h)}{k_{vs}}\right)^{2}$$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m^3/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DESIGN

The valve body is made of nodular cast iron, EN GJS 450-10, ASTM A536 grade 65-45-12. The valve flanges are drilled according to, EN1092-2 (ANSI flanges available on request).

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

SPECIFICATION	5		
Туре	Flange connection DN in mm	kvs-value m³ /h	Weight kg
50 G3FSI	50	53	11
65 G3FSI	65	82	22
80 G3FSI	80	86	26
100 G3FSI	100	173	44
125 G3F5I	125	285	55
150 G3FSI	150	389	74

Subject to changes without notice.

CHARACTERISTICS

- Nominal pressure DN 50-150 mm: PN 10,
- Temperature range 7 to 127 °C

APPLICATIONS

Thermostatic control valve type G3FSI is a three-way control valve unique due to its internal sensor technology. The thermostatic valve is ideal for controlling fluid temperature, in cooling and heat recovery systems, and other temperature controlling applications such as: compressors, industrial engines, marine, power generation, renewable energy among others.

3-WAY THERMOSTATIC VALVE TYPE G3FSI

2.5.15-A

NODULAR CAST IRON, DN 50 - 150 mm,

FUNCTION

The thermostatic valve uses the principle of expanding wax, which undergoes large expansion rates within a relatively narrow temperature range. The self-acting element activates a cone, which directs the flow. All Clorius thermostatic valves are factory set at predetermined temperatures: no further adjustments are necessary. A wide range of temperatures are available for water and oil temperature control applications.

When using in a diverting application, on start-up the total fluid flow is routed back to the main system. As fluid temperature rises to the control range, some fluid is diverted to the cooling system. As fluid temperature continues to increase, more flow is diverted. When the thermostat is in a fully stroked condition, all fluid flow is directed to the cooling system. Clorius thermostatic valves may also be used in mixing application.

In a mixing application, port B is the hot by-pass fluid inlet and port C the cold fluid inlet from the cooler. The flows mix and the thermostats adjusts to reach the setpoint temperature of the mixed output flow through port A (commen port).

PORT NUMBERING

TECHNICAL DATA

Materials:	
- Valve body	Nodular Cast iron
	ASTM A536 Grade 65-45-12
	(EN-GJS-450-10)
Temperature range	7 to 127 °C
Flanges	EN1092-2
-	(ANSI flanges available on request)
Docommondod	

Recommended pressure drop

0,15 - 0,5 bar

Max. static pressure DN 50-150 Optional

10 bar Manual override Nickel plated thermostatic elements Wheep holes

MOUNTING

The valve can be installed in all positions. No additional space required.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to changes without notice.

3-WAY THERMOSTATIC VALVE TYPE G3FSI 2.5.15-A

NODULAR CAST IRON, DN 50 - 150 mm,

SET POINT TEMPERATURES

DIMENSIONS									
	D	imensio	ons	S Max. Flange drilling S Width in mm EN 1092-2 in mm				Set Point	
Туре	Y	W	Z		Outer diameter	Bolt circle	Dia. of holes x no. of holes		temperatur deg. C. 7
50 G3ESI		mm 228	mm 153	159		ø125	α19 x /		13
65 G3FSI	129	259	170	206	0185	ø145	019 x 4		18
80 G3F5I	136	273	175	203	ø200	ø160	ø19 x 8		24
100 G3FSI	201	402	217	279	ø220	ø180	ø19 x 8		32
125 G3FSI	247	494	243	356	ø250	ø210	ø19 x 8		35
150 G3FSI	245	490	256	406	ø285	ø240	ø23 x 8		38
					Subjec	t to chan	ge without notice		41
								1	43
									46
									49
DIMENSION	SKET	CH							54
									57
									60
									66
			, all						68
B	L 1941. •		A C	B	1			_	71
									74
		JE!							77
		(K			Z	79
	Δ	1							82
γ		<u>{/////</u>		Ţ		<u> </u>			85
-	W			-	ĭ	W-			88
									91
									96
									99
									104
									110
									116
									121
									127

GB-3

Clorius Controls Three-Way Temperature Regulator Type Series 226G0121 with manual override deliverable size: 200 mm

Technical Data

material: - bodv EN-GJS-400-15 - innerparts operation temperature operation pressure adm. differential pressure

ss/brass up to 120 °C up to 10 bar up to 10 bar

thermostat sealing kit nominal pressure connection manual override

237.1121-xxx NBR PN 10 flange EN 1092-2 form B

This emergency manual adjustment is not to be used for adjustment during automatic operation.

°C 38 - 49 °C 51 - 62 °C	
°C 40 - 52 °C 57 - 68 °C	
°C 43 - 54 °C 85 -95 °C	
, ,	°C 40 - 52 °C 57 - 68 °C ′°C 43 - 54 °C 85 -95 °C

Application

Clorius Controls Temperature Regulators are suitable for the stabilization of temperatures of media (e.g. water, oils, etc.) and are even applicable as dividing units or mixing valves. Depending on their construction they are distinguished by their low need of maintenance, particular operating convenience and resistance to pressure. A replacement of inner parts is possible on site without having to remove the regulating valve from the piping. A faulty assembly can be excluded. The temperature regulators could be assembled in each fitting position. Function

Clorius Controls Temperature Regulators are being equipped with easily replaceable internal wax-filled thermostats that absorb the temperature of the medium surrounding them at the measurement point namely into expansion and thus a change in path or length (the valve stroke). Clorius Controls Temperature Regulators do not require any auxiliary energy. At rising temperature and on excess of the opening temperature, the tube slider is being lifted off of the valve seat and opening path A to C, with the path A to B locking simultaneously in the same ratio. The change is being performed in proportion to the change of temperature of the passing medium.

Manual Override: In order to meet the security demands of the classification societies for greater safety, the manual override was installed. It is not intended for setting the temperature when the regulating valve runs automatically. The manual resetting facility makes it possible to use the control valve as a manual change-over valve. The taper can be brought into any desired position by means of an adjusting screw, so that any operating temperature can be set by observing the thermometer.

Clorius Controls Three-Way Temperature Regulator Type Series 226G1121 with manual override deliverable size: 200 mm

Technical Data

material: - bodv EN-GJS-400-15 - inner parts operation temperature operation pressure adm. differential pressure

ss/brass up to 120 °C up to 16 bar up to 16 bar

thermostat sealing kit nominal pressure connection manual override

237.1121-xxx NBR **PN 16** flange EN 1092-2 form B

This emergency manual adjustment is not to be used for adjustment during automatic operation.

Installation	n:							
The installation can be done selectively as follows:			deliverable temperature ranges					
as divider as mixing valve		as mixing valve	20 - 32 °C	38 - 49 °C	51 - 62 °C			
path B: to	o bypass	path B: from bypass	27 - 37 °C	40 - 52 °C	57 - 68 °C			
path C: to	o cooler	path A: to motor	35 - 47 °C	43 - 54 °C	85 -95 °C			
The temper	The pathes have been marked on the connections. The temperature regulator may be installed in all positions.							

Application

Clorius Controls Temperature Regulators are suitable for the stabilization of temperatures of media (e.g. water, oils, etc.) and are even applicable as dividing units or mixing valves. Depending on their construction they are distinguished by their low need of maintenance, particular operating convenience and resistance to pressure. A replacement of inner parts is possible on site without having to remove the regulating valve from the piping. A faulty assembly can be excluded. The temperature regulators could be assembled in each fitting position. Function

Clorius Controls Temperature Regulators are being equipped with easily replaceable internal wax-filled thermostats that absorb the temperature of the medium surrounding them at the measurement point namely into expansion and thus a change in path or length (the valve stroke). Clorius Controls Temperature Regulators do not require any auxiliary energy. At rising temperature and on excess of the opening temperature, the tube slider is being lifted off of the valve se-at and opening path A to C, with the path A to B locking simultaneously in the same ratio. The change is being performed in proportion to the change of temperature of the passing medium. Manual Override: In order to meet the security demands of the classification societies for greater safety, the manual override was installed. It is not intended for setting the temperature when the regulating valve runs automati-

cally. The manual resetting facility makes it possible to use the control valve as a manual change-over valve. The taper can be brought into any desired position by means of an adjusting screw, so that any operating temperature can be set by observing the thermometer.

3-way Control Valves type G3FA Nodular cast iron, DN 80 – 300 mm

2.5.16-A GB-1

Characteristics

- Nominal pressure 80-200 G3FA: PN 16 max. 120°C / 160°C 300/250-300 G3FA: PN 10 max. 120°C / 160°C 80-300 G3FA: JIS 10K (option)
 Pogulating comphility. ^{kys} > 25
- Regulating capability $\frac{\kappa_{VS}}{k_{Vr}} > 25$
- Two balanced single seats
- For cooling and heating purposes

Applications

Control valves type G3FA are designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines. Is used in conjunction with Clorius valve motor type AVM/AVF 234 or Clorius pneumatic actuators.

Dimensioning

For sizing of control valves bigger than DN 150 mm following equation can be used:

$$k_{vs} = \frac{G(m^{3}/h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^{3}/h)}{k_{vs}}\right)^{2}$$

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of nodular cast iron and the valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type G3FA are marked with the letters AB, A and B. The letters in parentheses refer to the corresponding internationally adapted designations.

Port AB (1)common port always openPort A (2)closes at load on spindlePort B (3)opens at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection A-AB is kept fully open and connection B-AB is fully closed. In the other extreme position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change propertionally.

Specificatio	ns				
Type	Flange connection	Opening	k _{vs} -value ¹⁾	Lifting height	Weight
	DN IN MM	mm	m³/n	mm	кg
80 G3FA	80	80	80	11	35
100 G3FA	100	100	125	13	44
125 G3FA	125	125	215	18	72
150 G3FA	150	150	310	20	111
200/175 G3FA	200	200	425	22	165
200 G3FA	200	200	555	28	160
300/250 G3FA	300	300	865	28	306
300 G3FA	300	300	1250	45	290

¹⁾ The stated k_{vs} values apply for mixing valves. Diverting valves: 0.86 x (k_{vs} -values for mixing valves).

Subject to change without notice.

GB-2

Technical data

Material	S:	
- Valve	e body	Nodular cast iron
		EN-GJS-400-15
- Trim		Gun metal RG 5
		CuSn5Zn5Pb5-C
- Valve	e spindle	Stainless steel
		(W.no. 1.4436)
Nominal	pressure	
80-200) G3FA: P	N 16 (max.120/160°C)
300/25	0-300 G3FA:	PN 10 (max.120/160°C)
80-300) G3FA:	JIS 10K (option)
Seats	2	balanced single seats
Valve ch	aracteristic	Almost linear
Leakage	•	$\leq 0.5\%$
Tempera	ture range	Max. 120°C / 160°C
Mounting	g	See below
Flanges	Ac	cording to EN 1092-2,
		PN 16 & PN 10
- option:	Accord	ding to JIS B 2210 10K
Note !	Valve type 20	00/175 G3FA has outer
	measures	s and flanges drilled as
		valve type 200 G3FA.
	Valve type 30	00/250 G3FA has outer
	measures	s and flanges drilled as
		valve type 300 G3FA.
Counter	flanges (sugg	ested for EN 1092-2)
80-200) G3FA:	DIN 2633 – PN 16
300/25	50-300 G3FA:	DIN 2632 – PN 10

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertical as well as horizontal. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations.

Free height above / below the valve must be minimum 400 mm for mounting and operation of the AVM/AVF 234 motor, otherwise minimum 745 mm for pneumatic actuators.

Strainer It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimension sketch incl. AVF/M 234

Dimensions												
							E	EN 10	92-2	JIS	B 22	10 10K
							D	k	d mm	D	k	d mm
Туре	L	L1	L2	н	H1	b	(dia.)	(dia.)	dia.	(dia.)	(dia.)	dia.
	mm	mm	mm	mm	mm	mm	mm	mm	(number)	mm	mm	(number)
80 G3FA	310	155	102	117	127	19	200	160	19x(8)	185	150	19x(8)
100 G3FA	350	175	112	132	141	19	220	180	19x(8)	210	175	19x(8)
125 G3FA	400	240	138	181	171	19	250	210	19x(8)	250	210	23x(8)
150 G3FA	480	270	165	216	189	24	285	240	23x(8)	280	240	23x(8)
200/175 G3FA	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
200 G3FA	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
300/250 G3FA	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)
300 G3FA	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)

Subject to change without notice.

3-way Control Valves type G3FA-HT Nodular cast iron, PN 16, DN 80 – 200 mm / PN 10, DN 300/250 – 300 mm High temperature (Teflon Graphite sealing)

2.5.17.01-A

GB-1

Characteristics

- Nominal pressure 80-200 mm: PN 16 max.150°C 300/250-300 mm: PN 10 max.150°C
- Regulating capability $\frac{k_{vs}}{k_{vr}}$ > 25
- Two balanced single seats
- For cooling and heating purposes

Applications

Control valves type G3FA-HT are designed for regulating of fresh water, lubricating oil and other liquid media. The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines. Is used in conjunction with Clorius valve motor type MT90 Marine.

Dimensioning

For sizing of control valves the following equation can be used:

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of nodular cast iron and the valve flanges are drilled according to EN 1092-2.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type G3FA-HT are marked with the letters AB, A and B. The letters in parentheses refer to the corresponding internationally adapted designations.

Port AB (1)common port always openPort A (2)closes at load on spindlePort B (3)opens at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection A-AB is kept fully open and connection B-AB is fully closed. In the other extreme position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change propertionally.

Technical data

Materials	
- Valve body	Nodular cast iron
	EN-GJS-400-15
- Trim	Gun metal RG 5
	CuSn5Zn5Pb5-C
- Valve spindle	Stainless steel
	(1.4436)
Nominal pressure	
80-200 G3FA-HT:	PN 16 (max.150°C)
300/250-300 G3FA-H	IT: PN 10 (max.150°C)
Seats 2	balanced single seats
Valve characteristic	Almost linear
Leakage	$\leq 0.5\%$
Temperature range	Max. 150°C
Mounting	See page 2
Flanges Ac	cording to EN 1092-2,
	PN 16 & PN 10
Note ! Valve type 2	200/175 G3FA-HT has
outer measu	res and flanges drilled
as va	lve type 200 G3FA-HT
Valve type	300/250 G3FA-HT has
outer measu	res and flanges drilled
as va	lve type 300 G3FA-HT
Counter flanges (sugge	ested)
80-200 G3FA-HT:	DIN 2633 - PN 16
300/250-300 G3FA-H	HT: DIN 2632 - PN 10

Subject to change without notice.

Specifications	5				
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value ¹⁾ m³/h	Lifting height mm	Weight kg
80 G3FA-HT	80	80	80	11	35
100 G3FA-HT	100	100	125	13	44
125 G3FA-HT	125	125	215	18	72
150 G3FA-HT	150	150	310	20	111
200/175 G3FA-HT	200	200	425	22	165
200 G3FA-HT	200	200	555	28	160
300/250 G3FA-HT	300	300	865	28	306
300 G3FA-HT	300	300	1250	45	290

¹⁾ The stated k_{vs} values apply for mixing valves. Diverting valves: 0.86 x (k_{vs}-values for mixing valves).

2.5.17.01-A

GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the $k_{vs}\text{-}value$ will decrease by 14% as against mixing valves.

Mounting

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecessary vibrations. Free height above / below the valve must be minimum 400 mm for mounting and operation of the AVM/AVF 234 motor. See drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions								
Turne	L	L1	н	H1	b	D (dia.)	k (dia.)	d mm dia.
Туре	mm	mm	mm	mm	mm	mm	mm	(number)
80 G3FA-HT	310	155	117	127	19	200	160	19 x (8)
100 G3FA-HT	350	175	132	141	19	220	180	19 x (8)
125 G3FA-HT	400	240	181	171	19	250	210	19 x (8)
150 G3FA-HT	480	270	216	189	24	285	240	23 x (8)
200/175 G3FA-HT	600	325	238	238	20	340	295	23 x (12)
200 G3FA-HT	600	325	238	238	20	340	295	23 x (12)
300/250 G3FA-HT	850	450	305	305	25	445	400	23 x (12)
300 G3FA-HT	850	450	305	305	25	445	400	23 x (12)

Subject to change without notice.

Nodular cast iron, DN 80 - 200 mm - PN 16, DN 300/250 and 300 mm - PN 10

2.5.18-A

Characteristics

 Nominal pressure
 200/175-200 G3FA-I: PN 16 max. 120°C / 160°C
 300/250-300 G3FA-I: PN 10 max.120°C / 160°C
 200/175-300 G3FA-I: JIS 10K (option)

• Regulating capability $\frac{k_{VS}}{k_{Vr}}$ > 25

- Two balanced single seats
- For cooling and heating purposes

Applications

Control valves type G3FA-I are designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with large industrial processes, district heating and marine installations, e.g. cooling of main and auxiliary engines. Is used in conjunction with Clorius valve motor type AVM/F 234.

Dimensioning

For sizing of control valves following equation can be used:

$$\begin{aligned} k_{vs} &= \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}} \\ \Delta p(bar) &= \left(\frac{G(m^3 / h)}{k_{vs}}\right)^2 \end{aligned}$$

Please see datasheet 4.8.05, for max. differential pressure which the actuator type AVM/F 234, can close the valve against.

Design

The valve components (seats and cone) are made of gun metal, the spindle of stainless steel. The valve body is made of nodular cast iron and the valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Port numbering

The ports of valves type G3FA-I are marked with the letters AB, A and B. The letters in parentheses refer to the corresponding internationally adapted designations.

Port AB (1)common port always openPort A (2)opens at load on spindlePort B (3)closes at load on spindle

Function

The valve cone is firmly connected with the motor spindle. When the valve cone is in the one extreme position by draw on the spindle, connection B-AB is kept fully open and connection A-AB is fully closed. In the other extreme position connection B-AB is fully closed and connection A-AB is fully open. In the intermediate positions the opening degrees change propertionally.

Specifications							
Туре	Flange connection DN in mm	Opening mm	k_{vs}-value ¹⁾ m³/h	Lifting height mm	Weight kg		
80 G3FA-I	80	80	80	11	35		
100 G3FA-I	100	100	125	13	44		
125 G3FA-I	125	125	215	18	72		
150 G3FA-I	150	150	310	20	111		
200/175 G3FA-I	200	200	425	22	165		
200 G3FA-I	200	200	555	28	160		
300/250 G3FA-I	300	300	865	28	306		
300 G3FA-I	300	300	1250	45	290		

¹⁾ The stated k_{vs} values apply for mixing valves. Diverting valves: 0.86 x (k_{vs} -values for mixing valves).

Subject to change without notice.

Nodular cast iron, DN 80 - 200 mm - PN 16, DN 300/250 and 300 mm - PN 10

GB-2

2.5.18-A

Technical data

Materials:	
- Valve body	Nodular cast iron
	EN-GJS-400-15
- Trim	Gun metal RG 5
	CuSn5Zn5Pb5-C
- Valve spindle	Stainless steel
	(W.no. 1.4436)
Nominal pressure	
80-200 G3FA-I: PN	16 (max.120/160°C)
300/250-300 G3FA-I: PN	l 10 (max.120/160°C)
200/175-300 G3FA-I:	JIS 10K (option)
Seats 2 ba	lanced single seats
Valve characteristic	Almost linear
Leakage	≤ 0.5%
Temperature range	Max. 120°C / 160°C
Mounting	See below
Flanges Accor	rding to EN 1092-2,
-	PN 16 & PN 10
- option: Accordin	g to JIS B 2210 10K
Note ! Valve type 200/1	75 G3FA-I has outer
measures ar	nd flanges drilled as
val	ve type 200 G3FA-I.
Valve type 300/2	50 G3FA-I has outer
measures ar	nd flanges drilled as
val	ve type 300 G3FA-I.
Counter flanges (suggest	ted for EN 1092-2)
80-200 G3FA-I:	DIN 2633 – PN 16
300/250-300 G3FA-I:	DIN 2632 – PN 10

Definition of k_{vs}-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Important note

In case the valves are applied as diverting valves, the pressure drop will increase by 35% and the k_{vs} -value will decrease by 14% as against mixing valves.

Mounting

The valves can be installed vertically as well as horizontally. The valves must be mounted in a way that the valve motor will be exposed to a minimum of moisture and unnecassary vibrations.

Free height above/below the valve must be minimum 400 mm for mounting and operating of the AVM/F 234 motor, see drawing.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions												
							E	EN 10	92-2	JIS	B 22	10 10K
Туре	L mm	L1 mm	L2 mm	H mm	H1 mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)
80 G3FA-I	310	155	102	117	127	19	200	160	19x(8)	185	150	19x(8)
100 G3FA-I	350	175	112	132	141	19	220	180	19x(8)	210	175	19x(8)
125 G3FA-I	400	240	138	181	171	19	250	210	19x(8)	250	210	23x(8)
150 G3FA-I	480	270	165	216	189	24	285	240	23x(8)	280	240	23x(8)
200/175 G3FA-I	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
200 G3FA-I	600	325	230	238	238	20	340	295	23x(12)	330	290	23x(12)
300/250 G3FA-I	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)
300 G3FA-I	850	450	325	305	305	25	445	400	23x(12)	445	400	25x(16)

Subject to change without notice.

3-way Control Valves type G3FM-TR (AB-Right) Nodular cast iron, DN 80 – 800 mm

2.6.02-T

GB-1

Characteristics

- Nominal pressure DN 80-125 mm: PN25 max. 100 °C DN 150-300 mm: PN 16, max. 100°C (option 250°C) DN 350-800 mm: PN 10, max. 100°C (option 250°C) DN 150-800 mm: JIS 5K (option)
- Slide in Nodular cast iron

Applications

Control valve type G3FM-TR is a threeway control valve with a slide for quarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil volumes:

- Engine Jacket Cooling Water System
- Lubricating Oil Cooling
- Central Cooling Water System, etc.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

For sizing of control valves the following equation can be used:

$$\begin{split} \mathbf{k}_{vs} &= \frac{\mathbf{G}(\mathbf{m}^3 \, / \mathbf{h})}{\sqrt{\Delta p(\text{bar})}} \\ \Delta p(\text{bar}) &= \left(\frac{\mathbf{G}(\mathbf{m}^3 \, / \mathbf{h})}{\mathbf{k}_{vs}}\right)^2 \end{split}$$

Design

The valve body and the valve slide are made of nodular cast iron. The valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

Specifications

Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weight kg
80 G3FM-TR	80	available from July 2016			
100 G3FM-TR	100	175	220	52	41
125 G3FM-TR	125	245	330	98	58
150 G3FM-TR	150	395	425	135	71
200 G3FM-TR	200	800	1100	330	114
250 G3FM-TR	250	1500	2100	450	159
300 G3FM-TR	300	2000	2650	700	207
350 G3FM-TR	350	2530	3380	780	278
400 G3FM-TR	400	3050	3950	880	346
450 G3FM-TR	450	3680	4480	1250	433
500 G3FM-TR	500	4150	5250	1450	563
600 G3FM-TR	600	4800	6050	1750	816
700 G3FM-TR	700	5500	7000	2150	1150
800 G3FM-TR	800	6200	8000	2550	1400

 $^{\scriptscriptstyle 1)}$ k_{vs}-value for port A and B 50% open.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally. The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Technical data

Materials:	
- Valve body, slide	Nodular cast iron
	EN-GJS-400-15
- O-ring	NBR 70A
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Max. 100°C
	(option 250°C)
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/16/25
- option	JIS B 2210 5K
Counter flanges (su	iggested for
EN 1092-2)	DIN 2632 - PN 10
	DIN 2633 - PN 16
	DIN 2634 - PN 25
Max. pressure Δp_L ,	against which the
valve can close:	
- DN 80 - 125	25 bar
- DN 150-300	16 bar
- DN 350-800	10 bar

Subject to change without notice.

Port numbering

3-way Control Valves type G3FM-TR (AB-Right) Nodular cast iron, DN 80 – 800 mm

GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Valves can also be supplied in AB-Left configuration (data sheet 2.6.03).

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimension	Dimensions																	
							E	EN 10	92-2	ANSI Class 150			JIS B 2210 5K			JIS B 2210 10K		
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)	D (dia.) mm	k (dia.) mm	d mm dia. (number)
80 G3FM-TR																		
100 G3FM-TR	350	175	158	112	17	273	235	190	23x(8)	230	190,9	19x(8)	200	165	19x(8)	210	175	19x(8)
125 G3FM-TR	400	200	179	123	17	273	270	220	28x(8)	255	216	22x(8)	235	200	19x(8)	250	210	23x(8)
150 G3FM-TR	438	219	196	139	20	276	290	240	23x(8)	280	241	22x(8)	265	230	19x(8)	280	240	23x(8)
200 G3FM-TR	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)
250 G3FM-TR	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
300 G3FM-TR	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)
350 G3FM-TR	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)
400 G3FM-TR	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)
450 G3FM-TR	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)
500 G3FM-TR	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)
600 G3FM-TR	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)
700 G3FM-TR	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)
800 G3FM-TR	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)

Subject to change without notice.

3-way Control Valves type G3FM-TL (AB-Left) Nodular cast iron, DN 150 – 800 mm

2.6.03-F GB-1

Characteristics

- Nominal pressure DN 150-300 mm: PN 16, max. 100°C (option 250°C) DN 350-800 mm: PN 10, max. 100°C (option 250°C) DN 150-800 mm: JIS 5K (option)
- Slide in Nodular cast iron

Applications

Control valve type G3FM-TL is a threeway control valve with a slide for quarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil volumes:

- Engine Jacket Cooling Water System
- Lubricating Oil Cooling
- Central Cooling Water System, etc.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

For sizing of control valves the following equation can be used:

$$\begin{split} k_{vs} &= \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}} \\ \Delta p(bar) &= \left(\frac{G(m^3 / h)}{k_{vs}}\right)^2 \end{split}$$

Design

The valve body and the valve slide are made of nodular cast iron. The valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

Specifications

Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weight kg
150 G3FM-TL	150	395	425	035	71
200 G3FM-TL	200	800	1100	330	114
250 G3FM-TL	250	1500	2100	450	159
300 G3FM-TL	300	2000	2650	700	207
350 G3FM-TL	350	2530	3380	780	278
400 G3FM-TL	400	3050	3950	880	346
450 G3FM-TL	450	3680	4480	1250	433
500 G3FM-TL	500	4150	5250	1450	563
600 G3FM-TL	600	4800	6050	1750	816
700 G3FM-TL	700	5500	7000	2150	1150
800 G3FM-TL	800	6200	8000	2550	1400

 $^{\scriptscriptstyle 1)}$ k_{vs}\text{-value for port A and B 50% open.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Technical data

Materials:	
- Valve body, slide	Nodular cast iron
	EN-GJS-400-15
- O-ring	NBR 70A
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Max. 100°C
	(option 250°C)
Mounting	See page 2
Flanges	EN 1092-2 PN 10/16
- option	JIS B 2210 5K
Counter flanges (su	ggested for
EN 1092-2)	DIN 2632 – PN 10
	DIN 2633 – PN 16
Max. pressure Δp_L ,	against which the
valve can close:	
- DN 150-300	16 bar
- DN 350-800	10 bar

3-way Control Valves type G3FM-TL (AB-Left) Nodular cast iron, DN 150 – 800 mm

Definition of k_{vs} -value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Valves can also be supplied in AB-Right configuration (data sheet 2.6.02).

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions																		
							EN 1092-2			ANSI Class 150			JIS B 2210 5K			JIS B 2210 10K		
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)									
150 G3FM-TL	438	219	196	139	20	276	290	240	23x (8)	286	241	22x (8)	265	230	19x(8)	280	240	23x(8)
200 G3FM-TL	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)
250 G3FM-TL	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
300 G3FM-TL	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)
350 G3FM-TL	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)
400 G3FM-TL	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)
450 G3FM-TL	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)
500 G3FM-TL	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)
600 G3FM-TL	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)
700 G3FM-TL	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)
800 G3FM-TL	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)

Subject to change without notice.

3-way Control Valves type G3FM-TM (AB-Middle) 2.6.03.02-B Nodular cast iron, DN 250 & 450 mm GB-1

Characteristics

- Nominal pressure DN 250 mm: PN 16, max. 100°C DN450 mm: PN 10, max. 100 °C
- Slide in Nodular cast iron

Applications

Control valve type G3FM-TM is a threeway control valve with a slide for quarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil volumes:

- Engine Jacket Cooling Water System
- · Lubricating Oil Cooling
- · Central Cooling Water System, etc.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

Dimensioning

For sizing of control valves the following equation can be used:

$$\begin{split} k_{vs} &= \frac{G(m^3 \, / h)}{\sqrt{\Delta p(bar)}} \\ \Delta p(bar) &= \left(\frac{G(m^3 \, / h)}{k_{vs}}\right)^2 \end{split}$$

Design

The valve body and the valve slide are made of nodular cast iron. The valve flanges are drilled according to EN 1092-2 (JIS B 2210 option).

Specifications

250 G3FM-TM 250 1500 2100 450 159	Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weight kg
450 C2EM TM 450 2000 4450 4250 422	250 G3FM-TM	250	1500	2100	450	159
450 GSFM-TM 450 5000 4450 1250 455	450 G3FM-TM	450	3680	4450	1250	433

¹⁾ k_{vs} -value for port A and B 50% open.

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can

be supplied with relevant test certificates from recognized classification societies.

Function

The slide is firmly connected with the motor spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

Technical data

Materials:

- Valve body, slide	Nodular cast iron
	EN-GJS-400-15
- O-ring	NBR 70A
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Max. 100°C
Mounting	See page 2
Flanges	EN 1092-2 PN 10/16
- option	JIS B 2210 5K
Counter flanges (su	iggested for
EN 1092-2)	DIN 2633 – PN 16
Max. pressure Δp_1 ,	against which the
valve can close:	

- DN 250	16 Bar
- DN 450	10 Bar

Subject to change without notice.

3-way Control Valves type G3FM-TM (AB-Middle) 2.6.03.02-B Nodular cast iron, DN 250 & 450 mm GB-2

Definition of kvs-value

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

Valves can also be supplied in AB-Right configuration (data sheet 2.6.02.01).

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Dimensions																		
							E	EN 10	92-2	AN	SI Cla	iss 150	JIS	S B 22	210 5K	JIS	B 22	10 10K
_	L	L1	н	H1	b	с	D	k	d mm									
Туре	mm	mm	mm	mm	mm	mm	(dia.) mm	(dia.) mm	dia. (number)									
250 G3FM-TM	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
450 G3FM-TM	820	410	391	322	26.5	556	640	585	31x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)

Subject to change without notice.

3-WAY CONTROL VALVES TYPE G3CM-T

NODULAR CAST IRON, DN 100 - 300 MM, GROOVED JOINTS

2.6.05-В

GB-1

TECHNICAL DATA

Materials: - Valve body, slide Nodular cast iron EN-GJS-400-15 - O-ring NBR 70A Valve characteristic Almost linear Leakage Max. 0.5% Temperature range Max. 100°C Mounting See page 2 Connection Grooved joints acc. to ANSI/AWWA C-606 (Victaulic joints) Max. pressure $\Delta p_{_{\rm I}}$, against which the 16 bar valve can close

CHARACTERISTICS

- Nominal pressure PN 16, max. 100°C (option 250°C)
- Slide in Nodular cast iron
- Low leakage

PORT NUMBERING AB-left AB-right

PRESSURE/TEMPERATURE DIAGRAM

	S	pecification	5	
Туре	Connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Weight kg
100 G3CM ²	100	125	107.5	33
150 G3CM	150	310	266.6	88
200 G3CM-T	200	800	1100	86
250 G3CM-T	250	1500	2100	130
300 G3CM-T	300	2000	2650	170
¹⁾ k _{vs} -value for port A	and B 50% open.	²⁾ available from 2	015	

APPLICATIONS

Control valve type G3CM-T is a three-way control valve with a slide for quarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil volumes:

- Engine Jacket Cooling Water System
- Lubricating Oil Cooling
- Central Cooling Water System, etc.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

FUNCTION

The slide is firmly connected with the motor spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally. The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

DEFINITION OF K_{VS}-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m^3/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DIMENSIONING

For sizing of control valves the following equation can be used:

$$k_{vs} = \frac{G(m^3 / h)}{\sqrt{\Delta p(bar)}}$$
$$\Delta p(bar) = \left(\frac{G(m^3 / h)}{k_{vs}}\right)^2$$

DESIGN

The valve body and the valve slide are made of nodular cast iron.

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

MOUNTING

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed vertically as well as horizontally. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

The slide is firmly connected with the motor spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed.

Subject to changes without notice.

3-WAY CONTROL VALVES TYPE G3CM-T

NODULAR CAST IRON, DN 100 – 300 MM, GROOVED JOINTS

2.6.05-B GB-3

DIMENSION SKETCH

		Di	mension	5		
Туре	L mm	L1 mm	H mm	B mm	C mm	D (dia.) mm
100 G3CM	350	175	132	19	470	114
150 G3CM	480	270	216	24	470	168
200 G3CM-T	530	270	236	21	361	219
250 G3CM-T	592	300	273	23	361	273
300 G3CM-T	649	330	305	25.5	361	324

Subject to changes without notice.

APPLICATIONS

Control valve type S3FM-T is a three way control valve with a slide for quarter turn operation, designed for most industrial fluids and agressive media.

DIMENSIONING

For sizing of control valves the following equation can be used:

 $k_{vs} = \frac{Q (m^{3} / h)}{\sqrt{\Delta p(bar)}}$ $\Delta p(bar) = \left(\frac{Q (m^{3} / h)}{k_{vs}}\right)^{2}$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_{vr} , of 1 bar.

DESIGN

The valve body and the valve slide are made of stainless steel AISI316. The valve flanges are drilled according to EN 1092-2. Optional: ANSI, JIS and Grooved Victaulic Joints.

Valves can also be supplied in AB-Left configuration (data sheet 2.7.02) and AB-Middle (data sheet 2.7.03)

QUALITY ASSURANCE

SPECIFICATIONS

All valves are manufactured in accordance to ISO 9001 certification, and are pressure and leakage tested before shipment.

The valves can be supplied with relevant test certificates from recognized classification societies.

FUNCTION

The slide is firmly connected with the actuator spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally. The valve has a minimum gap between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

TECHNICAL DATA

Materials:

- Valve body, slide	Stainless steel - AISI316/
	(Option DUPLEX)
- O-ring	A75H
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Maximum 250 °C ²⁾
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/16
- option	JIS B 2210 5K, ANSI
	Grooved Victaulic
	Joints
Counter flanges	(suggested for EN
	1092-2)
	DIN 2632 – PN 10
	DIN 2633 – PN 16
Max. pressure Δp_1 ,	against which the
valve can close:	
- DN 100-300	16 bar
- DN 350-800	10 bar

PRESSURE/TEMPERATURE DIAGRAM

PORT NUMBERING

Mixing

Diverting

Subject to change without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weigh kg
100 S3FM-TR	100	Α\/ΑΙΙ	ABLE FROM II	II Y 2015	
125 S3FM-TR	125	, (t), (i)_			
150 S3FM-TR	150	395	425	135	75
200 S3FM-TR	200	800	1100	330	114
250 S3FM-TR	250	1500	2100	450	159
300 S3FM-TR	300	2000	2650	700	207
350 S3FM-TR	350	2530	3380	780	278
400 S3FM-TR	400	3050	3950	880	346
450 S3FM-TR	450	3680	4480	1250	433
500 S3FM-TR	500	4150	5250	1450	563
600 S3FM-TR	600	4800	6050	1750	816
700 S3FM-TR	700	5500	7000	2150	1150

6200

800

800 S3FM-TR

¹⁾ k_{VS} -value for port A and B 50% open.

1400

2550

²⁾ For media temperature above 170 °C a cooling unit has to be applied on Clorius actuator

8000

CHARACTERISTICS

DN 100-300 mm: PN 16, max. 250°C DN 350-800 mm: PN 10, max. 250°C

MOUNTING

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

DIMENSIONS

										1								
							EN 1092-2 ANSI Class 150		JIS B 2210 5K			JIS	B 221() 10K				
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)									
100 S3FM-TR									^>				יע אר	145				
125 S3FM-TR									A		DLEI		LT ZU	כונ				
150 S3FM-TR	438	219	196	139	20	276	290	240	23x(8)	280	241	22x(8)	265	230	19x(8)	280	240	23x(8)
200 S3FM-TR	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)
250 S3FM-TR	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
300 S3FM-TR	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)
350 S3FM-TR	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)
400 S3FM-TR	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)
450 S3FM-TR	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)
500 S3FM-TR	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)
600 S3FM-TR	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)
700 S3FM-TR	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)
800 S3FM-TR	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)

Subject to change without notice

2.7.01-A GB-3

GROOVED VICTAULIC JOINTS SPECIFICATIONS											
Туре	Connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Weight kg							
100 S3CM-TR		AVAILABLE FRO	OM JULY 2015								
125 S3CM-TR											
150 S3CM-TR	150	310	266	65							
200 S3CM-TR	200	800	1100	92							
250 S3CM-TR	250	1500	2100	130							
300 S3CM-TR	300	2000	2650	170							

¹⁾ k_{vs}-value for port A and B 50% open.

GROOVED VICTAULIC JOINTS DIMENSIONS										
Туре	L mm	L1 mm	H mm	B mm	C mm	D (dia.) mm				
100 S3CM-TR		۸\/			2015					
125 S3CM-TR	AVAILABLE FRUM JULY 2015									
150 S3CM-TR	480	270	216	24	470	168				
200 S3CM-TR	530	270	236	21	361	219				
250 S3CM-TR	592	300	273	23	361	273				
300 S3CM-TR	649	330	305	25	361	324				

GROOVED VICTAULIC JOINTS DIMENSION SKETCH

APPLICATIONS

Control valve type S3FM-TL is a three way control valve with a slide for quarter turn operation, designed for most industrial fluids and agressive media.

DIMENSIONING

For sizing of control valves the following equation can be used:

 $k_{vs} = \frac{Q (m^{3} / h)}{\sqrt{\Delta p(bar)}}$ $\Delta p(bar) = \left(\frac{Q (m^{3} / h)}{k_{vs}}\right)^{2}$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_{v} , of 1 bar.

DESIGN

The valve body and the valve slide are made of stainless steel AISI316. The valve flanges are drilled according to EN 1092-2. Optional: ANSI, JIS and Grooved Victaulic Joints

Valves can also be supplied in AB-Right configuration (data sheet 2.7.01) and AB-Middle (data sheet 2.7.03)

QUALITY ASSURANCE

SPECIFICATIONS

All valves are manufactured in accordance to ISO 9001 certification, and are pressure and leakage tested before shipment.

The valves can be supplied with relevant test certificates from recognized classification societies.

FUNCTION

The slide is firmly connected with the actuator spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally. The valve has a minimum gap between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

TECHNICAL DATA

Materials:

- Valve body, slide	Stainless steel - AISI316
	(option DUPLEX)
- O-ring	A75H
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Maximum 250 °C ²⁾
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/16
- option	JIS B 2210 5K, ANSI
	Grooved Victaulic
	Joints
Counter flanges	(suggested for EN
	1092-2)
	DIN 2632 – PN 10
	DIN 2633 – PN 16
Max. pressure Δp_1 ,	against which the
valve can close:	
- DN 100-300	16 bar
- DN 350-800	10 bar

Туре	Flange connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Torque Nm	Weight kg
100 S3FM-TL	100	AVAIL	ABLE FROM JU	LY 2015	
125 S3FM-TL	125				
150 S3FM-TL	150	395	425	135	75
200 S3FM-TL	200	800	1100	330	114
250 S3FM-TL	250	1500	2100	450	159
300 S3FM-TL	300	2000	2650	700	207
350 S3FM-TL	350	2530	3380	780	278
400 S3FM-TL	400	3050	3950	880	346
450 S3FM-TL	450	3680	4480	1250	433
500 S3FM-TL	500	4150	5250	1450	563
600 S3FM-TL	600	4800	6050	1750	816
700 S3FM-TL	700	5500	7000	2150	1150
800 S3FM-TL	800	6200	8000	2550	1400

 $^{\mbox{\tiny 1)}}$ $k_{\mbox{\scriptsize VS}}\mbox{-value for port A and B 50% open.}$

²⁾ For media temperature above 170 °C

a cooling unit has to be applied on Clorius actuator

A AB

PRESSURE/TEMPERATURE DIAGRAM

PORT NUMBERING

Mixing

Diverting

Subject to change without notice.

3-way Control Valves type S3FM-TL (AB-Left) Stainless Steel, DN 100 – 800 mm

GB-2

CHARACTERISTICS

DN 100-300 mm: PN 16, max. 250°C DN 350-800 mm: PN 10, max. 250°C

MOUNTING

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

DIMENSIONS

							EN 1092-2 A			A1	ANSI Class 150			JIS B 2210 5K			JIS B 2210 10K		
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)										
100 S3FM-TL									۵۱		RIFI		וע סר	115					
125 S3FM-TL																			
150 S3FM-TL	438	219	196	139	20	276	290	240	23x(8)	280	241	22x(8)	265	230	19x(8)	280	240	23x(8)	
200 S3FM-TL	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)	
250 S3FM-TL	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)	
300 S3FM-TL	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)	
350 S3FM-TL	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)	
400 S3FM-TL	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)	
450 S3FM-TL	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)	
500 S3FM-TL	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)	
600 S3FM-TL	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)	
700 S3FM-TL	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)	
800 S3FM-TL	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)	
															Culting to				

Subject to change without notice

2.7.02-A GB-3

GROOVED VICTAULIC JOINTS SPECIFICATIONS										
Туре	Connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Weight kg						
100 S3CM-TL		AVAILABLE FRO	OM JULY 2015							
125 S3CM-TL										
150 S3CM-TL	150	310	266	65						
200 53CM-TL	200	800	1100	92						
250 S3CM-TL	250	1500	2100	130						
300 53CM-TL	300	2000	2650	170						

¹⁾ k_{vs}-value for port A and B 50% open.

GROOVED VICTAULIC JOINTS DIMENSIONS										
Туре	L mm	L1 mm	H mm	B mm	C mm	D (dia.) mm				
100 S3CM-TL		۸\/			2015					
125 S3CM-TL		AV			2013					
150 S3CM-TL	480	270	216	24	470	168				
200 S3CM-TL	530	270	236	21	361	219				
250 S3CM-TL	592	300	273	23	361	273				
300 S3CM-TL	649	330	305	25	361	324				

GROOVED VICTAULIC JOINTS DIMENSION SKETCH

APPLICATIONS

Control valve type S3FM-TM is a three way control valve with a slide for quarter turn operation, designed for most industrial fluids and agressive media.

DIMENSIONING

For sizing of control valves the following equation can be used:

 $k_{vs} = \frac{Q (m^3 / h)}{\sqrt{\Delta p(bar)}}$ $\Delta p(bar) = \left(\frac{Q (m^3 / h)}{k_{vs}}\right)^2$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DESIGN

The valve body and the valve slide are made of stainless steel AISI316. The valve flanges are drilled according to EN 1092-2. Optional: ANSI, JIS and Grooved Victaulic Joints

Valves can also be supplied in AB-Right configuration (data sheet 2.7.01) and AB-Left (data sheet 2.7.02)

QUALITY ASSURANCE

All valves are manufactured in accordance to ISO 9001 certification, and are pressure and leakage tested before shipment.

The valves can be supplied with relevant

SPECIFICATIONS k_{vs}-value ¹⁾ Mixing valve Flange connection Weight Torque **Diverting valve** kg Type m³/h 100 S3FM-TM 100 **AVAILABLE FROM JULY 2015** 125 S3FM-TM 125 395 425 150 135 75 150 S3FM-TM 200 53FM-TM 200 800 1100 330 114 250 S3FM-TM 250 1500 2100 450 159 2000 2650 700 207 300 S3FM-TM 300 350 S3FM-TM 350 2530 3380 780 278 400 S3FM-TM 400 3050 3950 880 346 450 S3FM-TM 450 3680 4480 1250 433 500 S3FM-TM 500 4150 5250 1450 563

4800

5500

6200

6050

7000

8000

1750

2150

2550

a cooling unit has to be applied on Clorius actuator

¹⁾ k_{VS} -value for port A and B 50% open.

²⁾ For media temperature above 170 °C

816

1150

1400

600

700

600 S3FM-TM

700 S3FM-TM

test certificates from recognized classification societies.

FUNCTION

The slide is firmly connected with the actuator spindle. When the slide is in the one outer position by turning the spindle, connection A-AB is fully open and connection B-AB is fully closed. In the other outer position connection A-AB is fully closed and connection B-AB is fully open. In the intermediate positions the opening degrees change proportionally. The valve has a minimum gap between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

TECHNICAL DATA

Materials:	
- Valve body, slide	Stainless steel
	- AISI316
	(option DUPLEX)
- O-ring	A75H
Valve characteristic	Almost linear
Leakage	Max. 0.5%
Temperature range	Maximum 250 °C ²⁾
Mounting	See page 2
Flanges	EN 1092-2
	PN 10/16
- option	JIS B 2210 5K, ANSI,
	Grooved Victaulic
	Joints
Counter flanges	(suggested for EN
	1092-2)
	DIN 2632 – PN 10
	DIN 2633 – PN 16
Max. pressure $\Delta p_{L'}$	against which the
valve can close:	
- DN 100-300	16 bar
- DN 350-800	10 bar

PRESSURE/TEMPERATURE DIAGRAM

PORT NUMBERING

Subject to change without notice.

3-way Control Valves type S3FM-TM (AB-Middle) Stainless Steel, DN 100 – 800 mm

2.7.03-A

GB-2

CHARACTERISTICS

DN 100-300 mm: PN 16, max. 250°C DN 350-800 mm: PN 10, max. 250°C

MOUNTING

The valve connections are marked A, B and AB. The slide is operating between A and B.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

DIMENSIONS

							E	EN 109	2-2	ANSI Class 150			JIS B 2210 5K			JIS B 2210 10K		
Туре	L mm	L1 mm	H mm	H1 mm	b mm	C mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)									
100 S3FM-TM									^>		RIFE		ו א סר	115				
125 S3FM-TM									~									
150 S3FM-TM	438	219	196	139	20	276	290	240	23x(8)	280	241	22x(8)	265	230	19x(8)	280	240	23x(8)
200 S3FM-TM	530	270	236	175	21	361	340	295	23x(12)	343	299	23x(8)	320	280	23x(8)	320	290	23x(12)
250 S3FM-TM	592	300	273	205	23	361	400	355	28x(12)	407	362	26x(12)	385	345	23x(12)	400	355	25x(12)
300 S3FM-TM	649	330	305	230	25.5	361	455	410	28x(12)	483	432	26x(12)	430	390	23x(12)	445	400	25x(16)
350 S3FM-TM	717	360	337	255	25.5	361	505	460	23x(16)	534	477	29x(12)	480	435	25x(12)	490	445	25x(16)
400 S3FM-TM	770	385	375	285	26	361	565	515	28x(16)	597	540	29x(16)	540	495	25x(16)	560	510	27x(16)
450 S3FM-TM	820	410	391	310	26.5	556	615	565	28x(20)	635	578	32x(16)	605	555	25x(16)	620	565	27x(20)
500 S3FM-TM	900	455	425	340	27.5	556	670	620	28x(20)	699	635	32x(20)	655	605	25x(20)	675	620	27x(20)
600 S3FM-TM	1000	505	470	393	31.0	556	780	725	31x(20)	813	750	35x(20)	770	715	25x(20)	795	730	33x(24)
700 S3FM-TM	1106	553	519	462	34.0	556	895	840	31x(24)		-		875	820	27x(24)	905	840	33x(24)
800 S3FM-TM	1200	600	579	507	37	556	1015	950	34x(24)		-		995	930	33x(24)	1020	950	33x(28)

Subject to change without notice

2.7.03-A

GB-3

GROOVED VICTAULIC JOINTS SPECIFICATIONS											
Туре	Connection DN in mm	k _{vs} -value ¹⁾ Mixing valve m³/h	k _{vs} -value ¹⁾ Diverting valve m³/h	Weight kg							
100 S3CM-TM		AVAILABLE FRO	OM JULY 2015								
125 S3CM-TM											
150 S3CM-TM	150	310	266	65							
200 53CM-TM	200	800	1100	92							
250 S3CM-TM	250	1500	2100	130							
300 53CM-TM	300	2000	2650	170							
¹⁾ k _{ve} -value for port A and B 50% open.											

GROOVED VICTAULIC JOINTS DIMENSIONS										
Туре	L mm	L1 mm	H mm	B mm	C mm	D (dia.) mm				
100 S3CM-TM		A) (2015					
125 S3CM-TM		AV			2015					
150 S3CM-TM	480	270	216	24	470	168				
200 53CM-TM	530	270	236	21	361	219				
250 53CM-TM	592	300	273	23	361	273				
300 53CM-TM	649	330	305	25	361	324				

GROOVED VICTAULIC JOINTS DIMENSION SKETCH

2-way Control Valves type S2FM-T Stainless Steel, PN 16, DN 100 – 300 / PN 10, DN 350 – 600 mm

DN 100-300 PN 16, max. 250°C (Optional 300°C) DN 350-800 PN 10, max. 250°C (Optional 300°C)

APPLICATIONS

Control valve type S2FM-T is a three-way control valve with blocked port making a two-way control valve. The slide for quarter turn operation designed for regulating of fresh water, lubricating oil and other liquid media.

The valves are designed for use in conjunction with industrial processes, district heating and marine installations with large water or lubricating oil quantities.

The valves are designed for use in conjunction with valve motor type CAR with handle for manual operation or for use in conjunction with a pneumatic actuator.

DIMENSIONING

For sizing of control valves the following equation can be used:

$$\begin{aligned} k_{vs} &= \frac{Q(m^3 \ /h)}{\sqrt{\Delta p(bar)}} \\ \Delta p(bar) &= \left(\frac{Q(m^3 \ /h)}{k_{vs}}\right)^2 \end{aligned}$$

DEFINITION OF KVS-VALUE

The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

DESIGN

The valve body and the valve slide are made of stainless steel AISI316.The valve flanges are drilled according to EN 1092-2. Optional: ANSI, JIS and Grooved Victalic Joints.

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

FUNCTION

The slide is firmly connected with the motor spindle. When the slide is in the one extreme position by turning the spindle, connection A-AB is kept fully open. In the other extreme position connection the valve is fully closed. In the intermediate positions the opening degrees change proportionally.

The valve has a small tolerance between body and slide. To minimize the leakage an O-ring is mounted in a groove on the slide.

PRESSURE/TEMPERATURE DIAGRAM

Subject to change without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

SPECIFICATI	UNS							
Туре	Flange connection DN in mm	k _{vs} -value m³∕h	Torque Nm	Weight kg				
100 S2FM-T	100							
125 S2FM-T	125	AVAILADLL						
150 S2FM-T	150	685	135	81				
200 S2FM-T	200	1100	330	135				
250 S2FM-T	250	1800	450	190				
300 S2FM-T	300	2450	700	262				
350 S2FM-T	350	3350	780	324				
400 S2FM-T	400	3850	880	403				
450 S2FM-T	450	4300	1250	507				
500 S2FM-T	500	5050	1450	645				
600 S2FM-T	600	6020	1750	890				

GB-1

2-way Control Valves type S2FM-T Stainless Steel, PN 16, DN 100 – 300 / PN 10, DN 350 – 600 mm

2.7.04-A

GB-2

TECHNICAL DATA

Materials: - Valve body, slide	Stainless Steel - AISI316
- O-ring	(option DUPLEX) A75H
100-300 S2FM-T 350-800 S2FM-T	PN 16 PN 10
Valve characteristic Leakage	Almost linear Max. 0.5%
Temperature range	Max. 250°C ¹⁾
Mounting	(optional 300 °C) See page 2
Flanges	EN 1092-2 PN 10/16
Counter flanges (sug	Igested) DIN 2632 - PN 10
Max. pressure Δp_{L} , as	gainst which the
100-300 S2FM-T 350-800 S2FM-T	16 bar 10 bar

MOUNTING

The valve connections are marked A and AB.

Check slide position before installation in the pipe. The slide position is marked on the top of the shaft.

The valves can be installed with vertical as well as horizontal spindles. The valves must be mounted in a way that the valve actuator will be exposed to a minimum of moisture and unnecessary vibrations.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

DIMENSION SKETCH

DIMENSIONS Type	L	L1	н	H1	b	C	D (dia.)	k (dia.)	d mm dia.
	mm	mm	mm	mm	mm	mm	mm	mm	(number)
100 S2FM-T			A\/A II				2015		
125 S2FM-T			AVAI		TKUIV	JULI	2013		
150 S2FM-T	438	219	196	189	20	276	290	240	23 x (8)
200 S2FM-T	530	306	236	175	21	361	340	295	23 x (12)
250 S2FM-T	592	340	273	205	23	361	400	355	28 x (12)
300 S2FM-T	649	371	305	230	25.5	361	455	410	28 x (12)
350 S2FM-T	717	403	337	255	25.5	361	505	460	23 x (16)
400 S2FM-T	770	430	375	285	26	361	565	515	28 x (16)
450 S2FM-T	820	457	391	310	26.5	556	615	565	28 x (20)
500 S2FM-T	900	499	425	340	27.5	556	670	620	28 x (20)
600 S2FM-T	1000	553	470	393	31.0	556	780	725	31 x (20)

Subject to change without notice.

¹⁾ For media temperature above 170 °C a cooling unit has to be applied on Clorius actuator

SECTION 3

V2, V4 and V8 Thermostats Self-acting Temperature Controls

Characteristics

- · Closing force 400 N, 500 N and 800 N
- For heating or cooling valves
- · Sturdy and reliable

• Temperature range 0 to 160°C (-30 to 280°C on request)

Applications

The temperature controller, which consists of a thermostat and a valve, is used for controlling the temperature in central heating systems, district heating systems, industrial plants or industrial processes and in marine systems. It can be used for the control of cold or hot water, steam or oil in heating as well as cooling systems.

Function

The adjusting cylinder of the thermostat is set at the required temperature for the heating medium in °C. This setting can be fixed, if required. The temperature control is carried out by the thermostatically controlled valve reducing or increasing the flow of the heating (or cooling) medium. The sensor and the capillary tube, which are filled with a liquid, constitute - together with the adjusting cylinder - a closed system.

If the temperature of a medium to be heated is above the required level, the temperature of the sensor liquid rises and expands, causing the piston of the thermostat to act upon the valve, reducing the flow of the heating medium.

If the temperature of the medium to be heated is below the required level, the temperature of the sensor liquid falls, reducing the volume of the liquid, so that the piston allows the valve to open under its internal spring, thus increasing the flow of the heating medium.

The neutral zone of a thermostat is the temperature difference which can occur at the sensor without any movement of the valve spindle. This represents the sensitivity of the control system to temperature changes:

V2 = 2.5°C, V4 = 2°C and V8 = 1.5°C.

Design

Thermostat

A thermostat consists of a sensor and a capillary tube, filled with liquid, and an adjusting cylinder.

The thermostat type designations and technical data are specified in fig. 2. With temperatures above 170°C, a cooling unit must be fitted between the valve and the thermostat - see fig. 1. The thermostat is self-acting and works on the principle of liquid expansion, it is sturdy in its design, and works with a large closing force.

Sensor

The following sensor types are available - see fig. 4:

- 4.1. Rod/spiral sensor in copper or stainless steel and spiral sensor in copper with threaded connection according to ISO R7/1.
- 4.2. Spiral sensor (copper only) with air duct flange.
- 4.3. Rod/spiral sensor with steel flange DN 50, PN 40 and DN 50, PN 160.
- 4.4. Sensor without connection. Usually used with capillary pack box for temperature control in tanks.

Capillary Tube

The capillary tube is made of copper, stainless steel, or of PVC-coated copper - see fig. 3, but can also be delivered with a flexible iron tube protection.

Valve

A wide range of valve types for heating as well as cooling systems can be delivered. See the "Quick Choice" leaflet no. 9.0.00 and datasheets for the valves in question.

Subject to changes, without notice.

Choice of Temperature Control

The selection of the correct temperature controller is determined by the sizing of the valve and thermostat respectively, which may be chosen by using the "Quick Choice" leaflet no. 9.0.00.

The designation of the thermostat is determined by using 3 elements, e.g. thermostat type V4.05, where V indicates type V thermostat, 4 indicates 0.01 x the force in Newton by which the thermostat can act upon the connected valve, and 05 relates to the travel of the thermostat spindle in mm by a temperature change of 1° C - see also fig. 2.

Fig. 1 indicates whether the temperature of the heating medium necessitates a cooling unit, and how the thermostat is to be mounted in relation to the valve; for a temperature range -30°C to 170°C the thermostat may be installed both above and below the valve.

Fig. 2 shows the type number of the thermostat, its closing force in N and its setting range in °C.

Fig. 3 shows the choices of length and material for the capillary tubes.

Fig. 4 shows the different types of sensors.

Fig. 5 shows the time coefficients for the sensors.

Fig. 6 shows the choices of sensor materials, etc.

Fig. 7 shows the dimensions and weights of the sensors etc.

Fig. 2. Thermostat Types

Technical Data			Thermostat Types									
lechnical Data	V2.05	V4.03	V4.05	V4.10	V8.09	V8.18						
Max. closing force		Ν	400	500	500	500	800	800				
		0-60	0-160	0-120	0-60	0-120	0-60					
Setting range for standard thermostats ¹⁾		°C	30-90		40-160	30-90	40-160	30-90				
			60-120			60-120		60-120				
Neutral zone		°C	2.5	2	2	2	1.5	1.5				
For valves with rated trave	l up to:	mm	10	21	21	21	21	21				
Travel (amplification)	mm/ºC	-30 to 160°C ²⁾	0.5	0.3	0.5	1	0.9	1.8				
in range:		140 to 280°C 3)	0.7	0.33	0.7	1.33	1.2	2.4				
¹⁾ Setting ranges from -30 to 2	80°C on	request Excess te	mp. safety ran	ge: 40°C	²⁾ Glycerine	9	³⁾ Paraffin					

Subject to changes, without notice.

Fig. 1. Temperature Limits

For marine installations please see instruction manual.

V2, V4 and V8 Thermostats Self-acting Temperature Controls

Fig. 3. Capillary Tubes

Choice of capillary tube, length and material, is determined according to the table below, independent of the choice of the thermostat type.

Length	Copper	PVC-coated copper	Stainless steel
3 m	•	•	•
4.5 m			•
6 m	•	•	٠
7.5 m			•
9 m	•	•	٠
10.5 m			٠
12 m	•	•	٠
13.5 m			٠
15 m	•	•	٠
16.5 m			٠
18 m	•	•	٠
19.5 m			٠
21 m	•	•	٠

Capillary Tube Adjusting Handle Scale Adjustment Union Nut

Fig. 4. Sensor Types

Subject to changes, without notice.

Fig. 5. Time Coefficient for Sensors

The time coefficients for rod and spiral sensors are measured in water flowing at a velocity of 1 m/sec., for air duct spiral sensors in air at a velocity of 4 m/sec.

In the table the time lag T_{D} and time coefficient *T* are indicated in sec.

			Co	pper		Acid-r	esistant	stainles	s steel	Copper with sensor pocket		
Туре	Rod sensor Spiral set		sensor	Spiral sensor for air duct	Rod s	sensor	Spiral	sensor	ensor Rod sensor L		Liquid in sensor	
	T _D	Т	T _D	Т	Т	T _D	Т	T _D	Т	T _D	Т	pocket
V2.05	10	85	3	20	360	10	85	3	20	20	210	Hot oil
V4.03	6	120	3	20	360	6	90	3	20	20	250	Hot oil
V4.05	6	130	2	20	360	6	100	2	20	20	200	Hot oil
V4.10	8	165	2	20	360	8	150	2	25	25	300	Hot oil
V8.09	8	165	2	30	600	9	220	2	30	25	450	Hot oil
V8.18						9	280	10	65	28*	570*	Hot oil

*Stainless Steel sensor with sensor pocket

Fig. 6. Sensor Material etc.

Accessories

Manual Adjusting Device

With stuffing box. For tightening and manual operation of the valves, when an actuator has not been fitted, e.g. during periods of construction.

Subject to changes, without notice.

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C .

Cooling Unit KS-5

Cooling unit with built-in bellows gland. Replaces the stuffing box of thermostat. Must be applied by valve temperatures between 250°C and 350°C.

V2, V4 and V8 Thermostats Self-acting Temperature Controls

Fig. 7. Dimensions and Weights

The measurements G and H are pi threads according to ISO R7/1. All measurements are mm.	pe other	Thermostat / Sensor material											
Weight: Net. c = Copper sensor.		Type V2.05 Type V4.03 Type V4.05		Туре	V4.10	Type V8.09 Type V8.18			V8.18				
s = Acid-resistant stainless steel ser	nsor.	с	s	с	s	с	s	с	s	с	s	с	s
Adjusting cylinder	AB	305 405	305 405	385 525	385 525	385 525	385 525	385 525	385 525	560 740	560 740		560 740
Sensor with threaded connection	C D F G H kg	210 235 22 49 R ³ ⁄4 R2 1.8	190 170 22 49 R ³ ⁄ ₄ R2 1.8	210 235 22 49 R1 R2 2.4	190 170 22 49 R1 R2 2.4	390 235 22 49 R1 R2 2.6	380 250 22 49 R1 R2 2.6	490 325 28 49 R1 R2 3.3	515 325 25 49 R1 R2 3.3	710 425 28 49 R2 R2 R2 6.3	745 435 25 49 R2 R2 R2 6.3		800 810 34 49 R2 R2 7.3
Weight incl. H-connection	кд	2.3	2.3	2.9	2.9	3.1	3.1	3.8	3.8	6.3	6.3		1.3
Sensors with air duct flange	F I L Kg	49 430 60 95 1.8		49 430 60 95 2.4		49 430 60 95 2.6		49 430 60 95 3.3		49 450 60 95 5.8			
Sensor with steel flange DN 50, PN 40	E F N O P R S T kg	22 49 200 225 4x18 125 165 22 5.3	22 49 180 160 4x18 125 165 22 5.3	22 49 200 225 4x18 125 165 22 5.9	22 49 180 160 4x18 125 165 22 5.9	22 49 380 225 4x18 125 165 22 6.1	22 49 360 240 4x18 125 165 22 6.1	28 49 315 4x18 125 165 22 6.8	25 49 505 315 4x18 125 165 22 6.8	28 49 700 415 4x18 125 165 22 9.3	25 49 735 425 4x18 125 165 22 9.3		34 49 790 800 4x18 125 165 22 10.3
Sensor with steel flange DN 50, PN 160	E F N O P R S T kg	22 49 180 205 4x27 145 195 45 11.3	22 49 160 140 4x27 145 195 45 11.3	22 49 180 205 4x27 145 195 45 11.9	22 49 160 140 4x27 145 195 45 11.9	22 49 360 205 4x27 145 195 45 12.1	22 49 340 220 4x27 145 195 45 12.1	28 49 460 295 4x27 145 195 45 12.8	25 49 485 295 4x27 145 195 45 12.8	28 49 680 395 4x27 145 195 45 15.3	25 49 715 405 4x27 145 195 45 15.3		34 49 770 780 4x27 145 195 45 16.3
Sensors without connection Available with capillary pack box in stainless steel (1.4436) $= \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{r} \bigoplus_{i=1}^{r} \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{$	E F G H V kg ¹⁾ kg ²⁾ kg ³⁾	22 49 R1 R2 250 290 1.6 1.6 1.8 2.3	22 49 R1 R2 230 220 1.6 1.6 1.8 2.3	22 49 R1 R2 250 290 2.2 2.2 2.4 2.9	22 49 R1 R2 230 220 2.2 2.2 2.4 2.9	22 49 R1 R2 430 290 2.3 2.4 2.6 3.1	22 49 R1 R2 410 310 2.3 2.4 2.6 3.1	28 49 R1 R2 535 375 3 3.1 3.3 3.8	25 49 R1 R2 555 370 3 3.1 3.3 3.8	28 49 R2 R2 750 470 5.5 5.6 6.3 6.3	25 49 R2 R2 785 490 5.5 5.6 6.3 6.3		34 49 R2 840 860 6.5 6.6 7.3 7.3

Dimensional Sketch

Subject to changes, without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

GB-5

Thermostats of stainless steel types V4.03, V4.05 and V4.10

Characteristics

- Self-acting
- P-controller
- · Completely sealed
- Excess temperature protection
- All parts made of stainless steel
- Non-magnetic

Application

The thermostat is particularly suitable for installation in demanding environments such as tank installations, outdoor plants and where it must be non-magnetic, e.g. in submarines.

Function

The adjusting cylinder of the thermostat is set at the temperature in °C for the required heated medium. The temperature is regulated by the thermostatically controlled valve reducing or increasing the flow of the heating medium. Together with the adjusting cylinder, the liquid-filled sensor and capillary tube constitute a closed system.

If the temperature of the medium to be heated is above the required level, the sensor liquid expands, causing the spindle of the thermostat to act upon the valve, thereby reducing the flow of the heating medium.

If the temperature is below the required level, the temperature of the liquid in the sensor decreases and the volume is reduced, thereby the valve spring opens the valve causing an increasing flow of the heating medium.

Construction

The parts of the thermostat are made of stainless steel. The thermostat consists of a liquid-filled sensor, a capillary tube, and an adjusting cylinder.

The adjusting cylinder has O-ring sealings and is sealed with silicone glue at the top for hermetical closure. The thermostat is available with settings between -30°C and +280°C.

At flow temperatures above 170°C, a cooling unit must be installed between the valve and the thermostat. Please see datasheet no. 8.5.00.

Neutral Zone

The neutral zone of the thermostat, which is less than 2°C, is the temperature difference which can accur at the sensor without the thermostat spindle being actuated.

Sensor types

Rod or spiral sensors of stainless steel with pipe thread.

Sensors are also available with a packbox on the capillary tube for applications where the sensor is to be lowered into a tank etc.

Sensor liquid

Glycerine at a scale range between - 30°C and 160°C.

Paraffin at a scale range between 140°C and 280°C.

Capillary tube

The capillary tube is made of stainless steel and is available in lengths from 3 m up to 21 m.

Valves

The thermostat may be used for valves up to DN 150 mm for heating and cooling plants.

See data sheet "Quick choice of temperature controller" no. 9.0.00 and data sheet for the particular valve.

Technical data

Max. closing force	500 N
Standard settings:	
-Type V4.03	0-160 °C
-Type V4.05	0-120, 40-160 °C
-Type V4.10	0-60, 30-90,
	60-120 °C
Reinforcement (mm	/°C):
(Glycerine)	Type V4.03: 0.3
	Type V4.05: 0.5
	Type V4.10: 1
(Paraffin)	Type V4.03: 0.33
	Type V4.05: 0.7
	Type V4.10: 1,33
For valves with	
lifting height up to	21 mm
Sensor material	W. No. 1.4436
Time constant for roo	d sensor:
- Type V4.03:	90 sec.
- Type V4.05:	100 sec.
Time constant for sp	iral sensor, sec. 20
Neutral zone	< 2°C
Excess temperature	protection 40°C
Matanialas	

Materials: Cover: Stainless steel 1.4301 Spring: 1.4401

Subject to change without notice.

Thermostats of stainless steel types V4.03, V4.05 and V4.10

Sensors with pipe thread	Type V4.03	Type V4.05	Type V4.10	
	C D F G* H*	190 mm 170 mm 22 mm 49 mm 1" 2"	380 mm 250 mm 22 mm 49 mm 1" 2"	515 mm 325 mm 29 mm 49 mm 1" 2"
Weight including G connection		2.4 kg	2.6 kg	3.3 kg
Weight including H connection		2.9 kg	3.1 kg	3.8 kg

* The measurements G and H are pipe threads according to ISO R7/1.

Subject to change without notice.

Clorius Duostats

Duostats are thermostats, type V, which via two sensing elements in a common hydraulic system act on one and the same control valve.

Two basic types are available:

V4.05 or V4.10, depending on the preferable proportional band PB, and the valve size. For more details, see the diagrams in the "Quick Choice" leaflet no. 9.0.00.

The sensing elements are two spiral sensors for the ventilation duct or two rod sensors (a combination of one spiral sensor and one rod sensor may be supplied in certain combinations). The effect, which the two sensing elements have on the adjustment, is proportional to the liquid volume of the individual sensors.

Duostats are therefore available with varying proportions between the liquid volumes of the two sensors (sensor proportions) and in that way they can meet the requirements made by a number of different adjustment problems. As the adjustment result is a weighted average value of the temperatures of the two sensors, no fixed adjustment value can be indicated. Hence, Duostats are not equipped with a temperature scale, but with a marking for adjustment towards higher or lower temperatures, respectively.

Applications

- 1. Adjustment of discharge air temperatures in hot-air heating plants, dependent on the outdoor temperature.
- 2. Adjustment of two temperatures which are interdependent. E.g. the hot-water tank of a district heating plant with simultaneous control that the return water temperature does not become too high.

Selection of Duostat Type

Duostats for room heating are supplied with seven different sensor combinations which cover all requirements seen in practice.

On selecting the suitable Duostat, the diagram A is used in the following manner: When the correct basic type (V4.05 or V4.10) has been chosen from the combination diagram in the "Quick Choice" leaflet, look at diagram A for the max. discharge air/flow temperature ($t_{i max}$), for which the plant has been dimensioned by the outdoor temperature ($t_{u min}$).

From here you follow the vertical lines to the crossing with the respective $t_{u \text{ min}}$ curve. The intersection lies within the area of the suitable sensor combination, the technical data of which are shown on page 4.

Example

A 50 M1F valve combined with a V4.10 thermostat, chosen from the combination diagrams in the "Quick Choice" leaflet, has to regulate by $t_{i max} = 40^{\circ}$ C and $t_{u min} = -15^{\circ}$ C. The Duostat curve sheet gives the sensor proportion C, and the Duostat will be type V4.10 C, which has the sensor proportion 0.7:1. This value may be calculated from equation 2) and 3) on page 3:

$$\frac{V_{s}}{V_{p}} = 1.25 \cdot \frac{\Delta t_{i}}{\Delta t_{u}} = 1.25 \cdot \frac{40-20}{20+15} = 0.7$$

If, for instance, a capillary tube of 6 m is required from the adjusting cylinder to the secondary sensor and 3 m to the primary sensor, you specify:

Valve:	50 M1F
Duostat:	V4.10 C
Capillary tube:	
Adjusting cylinder -	
secondary sensor	6 m
Adjusting cylinder -	
primary sensor	3 m

Applications

Air Heating Plants

For air heating plants Duostats with two spiral sensing elements for air ducts are used. Fig. 1 shows an example of a plant with Duostat. The primary sensor V_p (red) is the real control sensor which goes into the controlled system.

The secondary sensor V_s (blue) which is located outside the controlled system, registers the outdoor temperature and determines the necessary air temperature by V_p . If there is no supply air duct, where the secondary sensor can be built in, it can be placed in free air. For this purpose a wall bracket is available. In order to determine the correct Duostat, use diagram A where the combinations of spiral sensors for air ducts are found on the left hand.

Other Applications

Duostats are sometimes used for purposes where both sensing elements go into the same controlled system (see examples 2 and 3). The controlled condition will then be a weighted average of the registrations of the two sensors, as shown in the following examples.

In fig. 2 a hot-water tank connected to district heating is adjusted by a Duostat whose one sensor - the primary sensor - controls the temperature of the tank which should be constant. The secondary sensor registers the temperature of the water which is led back to the district heating network. It secures that the valve does not open so much that the temperature of the return water rises in an uncontrolled manner, when a large water consumption reduces the temperature in the tank.

Fig. 3 shows a room heated by hot air. The primary sensor is built into the extract air duct in order to serve as a room thermostat from this place. The secondary sensor is built into the discharge air duct where it counteracts that the discharge air temperature becomes too low - which would feel like a draught - when the room temperature rises as a result of the heat development which may come from persons or heating processes in the room.

Duostats Self-acting Temperature Controls

Theoretical Basis

The theoretical basis for the use of Duostats for room heating plants rests on the balance between the heat brought to the plant, and the thermal loss from the heated rooms to the surroundings. By hot-air plants (fig. 1) this may approximately be expressed by equation 1), but with small changes, these considerations may be applied to central heating plants with water as the heat carrier.

1)
$$Lc_{n}(t_{i} - t_{i}) = \Sigma kf(t_{r} - t_{i})$$

Here L is the quantity of air which is heated from the outdoor temperature t_u to the discharge temperature t_i , and c_p is the specific heat of the air. k·f expresses the sum of transmission surfaces, joints, etc., through which heat is lost to the surroundings by the difference between the temperatures of the heated rooms t_r and the outdoor temperature t_u . As L, c_p , k·f and the room temperature are constant sizes, equation 1) can be converted into:

2)
$$\frac{t_{i \max} - t_{i \min}}{t_{u \max} - t_{u \min}} = \frac{\Delta t_i}{\Delta t_u} = n$$

Here $t_{i max}$ and $t_{u min}$ are belonging values for the calculated discharge air temperature by the outdoor temperature for which the plant has been dimensioned. In the same way, $t_{i min}$ and $t_{u max}$ are interbelonging values by the condition where the thermal loss is 0 (normally 20°C). The size n expresses how many degrees t_i has to be raised, when t_u falls one degree. It is constant for the individual plant, but varies from plant to plant. This problem can be met by supplying the Duostats with different sensor proportions. The proportion between the liquid volume in secondary and primary sensors is:

3)
$$\frac{V_s}{V_p} = 1.25n$$

This formula is approximate, as the expansion coefficient of the liquid (glycerine) varies with the temperature, which is compensated for with the factor 1.25.

Clorius CONTROLS

Duostats Self-acting Temperature Controls

3.5.01-F

GB-4

Min. 525		TypeClosing powerLength of secondary sensor LSecondary sensor's windings W_s Secondary sensor's time constant *Primary sensors's time constant *Sensor proportion $V_s : V_p$ Excess temperature protectorMax. lifting heightTravel	N mm sec. sec. °C mm mm/°C	V4.05 A 500 430 7 360 360 0.35:1 80 21 0.5	V4.05 B 500 430 10 360 0.5:1 80 21 0.5	V4.05 C 500 430 14 360 360 0.7:1 80 21 0.5	V4.05 D 500 430 21 360 360 1:1 80 21 0.5	V4.05 E 500 430 29 360 360 1.4:1 80 21 0.5
Min. 525	50 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	TypeClosing powerLength of secondary sensor LSecondary sensor's windings W_s Secondary sensor's time constant *Primary sensors's time constant *Sensor proportion $V_s : V_p$ Excess temperature protectorMax. lifting heightTravel	N mm sec. sec. °C mm mm/°C	V4.10 A 500 430 14 360 360 0.35:1 40 21 1.0	V4.10 B 500 430 21 360 360 0.5:1 40 21 1.0	V4.10 C 500 430 29 360 360 0.7:1 40 21 1.0	V4.10 D 500 430 42 360 360 1:1 40 21 1.0	V4.10 E 500 430 42 360 360 1.45:1 40 21 1.0
		Type Closing power Length of secondary sensor C Secondary sensor's diam. E Secondary sensor's thread conn. G Secondary sensor's time constant * Primary sensor's time constant * Sensor proportion $V_s : V_p$ Excess temperature protector Max. lifting height Travel	N mm ISO 7/1 sec. sec. °C mm mm/°C	V4.05 L 500 390 22 R 1 130 130 1:1 80 21 0.5	V4.05 M 500 490 28 R 1 165 130 2:1 80 21 0.5			
Mun. 525		Type Closing power Length of secondary sensor C Secondary sensor's diam. E Secondary sensor's thread conn. G Secondary sensor's time constant * Primary sensor's time constant * Sensor proportion $V_s : V_p$ Excess temperature protector Max. lifting height Travel	N mm ISO 7/1 sec. sec. °C mm mm/°C	V4.10 L 500 490 28 R 1 165 165 1:1 40 21 1.0		V4.10 N 500 800 34 R 2 280 165 2.9:1 40 21 1.0	High alloy stainless steel	

* The time constants are for spiral sensing elements for air ducts measured in air with a velocity of 4 m/sec. For rod sensing elements they are measured in water with a velocity of 1 m/sec.

Order diagram

By specifications of Duostats, the following information is given:	Example
1. Valve. Dimension and type	15 M1F
2. Duostat. Basic type and sensor proportion	V4.05 C
3. Capillary tube from adjusting cylinder to secondary sensor (V $_{\rm s},$ blue)	6 m
4. Capillary tube from adjusting cylinder to primary sensor (V_p , red)	3 m

Pressure Differential Controls Type TD

3.9.01-J GB-1

Pressure differential controls, type TD, comprise a control valve, a diaphragm unit and 2 connecting capillaries.

Type TDS is supplied fitted to a brass valve and is available in four size/ range combinations. For further information, see separate data sheet no. 3.9.02.

The large controls type TD56-2, TD66-4 and TD66-8 can be used with our wide range of 2-way control valves, in sizes from 4 mm up to 80 mm (type TD56-2M up to DN 150 mm). For further information see "Quick Choice" no. 9.0.00 and data sheets for individual valves. TD56-2 is delivered complete with actuator and valve - please see datasheet 3.9.06.01 and 3.9.06.02.

The diaphragm housings are made of cast iron and the diaphragms of synthetic rubber clamped between 2 steel discs. To prevent the diaphragm from being ruptured, a safety overload spring is fitted between the diaphragm and the valve to prevent damage when subjected to excess pressure, forcing the diaphragm against the housing.

The controls are proportional controls. The proportional band is given as a percentage of set pressure value or as a pressure dependant upon the control type and the setting range.

The TD-controls are primarily for use in water systems where they maintain a constant differential pressure across 2 points and ensure stable flow conditions.

With the lower pressure connected to the valve side of the diaphragm and the higher pressure to the other side; the differential pressure across the diaphragm will be balanced by the force exerted by the spring.

Any change in the differential pressure will cause the diaphragm and the valve mechanism to move up or down to restore the set condition.

Working principle of the TD-Controls

Fig. 1. In the control valve the pressure is reduced from P1 to P2, and the control keeps (P2-P3) constant at a set value, although the external pressures "P1" and "P3" or the resistance "R" may be fluctuating.

Sizing of the valve is based on the smallest value of (P1-P2) with the maximum flow. For further information, see "Quick Choice" leaflet no. 9.0.00.

Similarly, fig. 2 shows the TD-control installed after the resistance "R" (in the return flow). In this case, (P2-P3) forms the basis for sizing the valve.

Applications

District Heating - in Housing Circuits without by-passes

The function of the TD-controls is to reduce the high and fluctuating pump head in the district heating system to a suitable and, under all circumstances, a constant differential pressure. It is very important that the TD-controls reduce the water flow as much as possible, to satisfy the design temperature drop across radiators and maintain heat output without excessive water flow.

An inexpensive arrangement for a district heating scheme is to use the TD-control instead of a return by-pass to reduce the flow rate to a minimum. This results in small bore pipework and reduces the need for additional pumps or electrically operated controls.

TD66

TD56-2

Fig. 2

Subject to change without notice.

Pressure Differential Controls Type TD

For low buildings, and high flow pressures, it is normally preferable to install the TD in the flow main to reduce the pressure in the radiators to a level almost equivalent to the static head in the return main.

Please also note the TD-control in the district heating circuit of the hot water tank (H.W.T), and that the capillaries are connected across the control valves, maintaining a constant differential pressure across the valves and an optimum control. The H.W.T's control valve should be as small as possible ensuring a slow heating and a good cooling of the district heating water.

Pressure Stabilization for Temperature Control

The TD-controls also apply for heating systems with heat exchangers see fig. 5. When temperatures have to be kept within close limits e.g. in ventilating plants, control may be difficult if the differential pressure in the system is not constant or is very high. This can be overcome by installing a TD-control in front of one or more places to be controlled. Examples are shown in fig. 6, and 7.

Fig. 6 is for district heating, direct supply, whereas fig. 7 is for boiler supply. Note that a by-pass is established by a 3-way valve and a TD control.

The TD-controls can be used with our range of reverse acting valves in by-pass around pumps or across the flow and return pipes of a circuit - see fig. 8 (boiler supply). This avoids the pump working against a dead head when all the sub-circuits are closed down and stops any bypassing on motorised valves or thermostatic radiator valves.

Noise Prevention

static head.

Noise from central heating installations can often be overcome by TD-controls.

The noise arising from a control valve is normally related to the pressure drop across it. Experts recommend that the pressure drop across radiator valves should not exceed 80 mbar, especially in the case of living room applications. In blocks of buildings with a common district heating station, there has, in recent years, been a tendency to increase the main pump head and this often results in valve noise.

Fig. 9 shows an example of the circuit to a block of buildings. The TDcontrol on the take off from the distribution main reduces the high pump head to suit the local pump head. TD-controls in each individual circuit further reduce the differential pressure across the system to the above mentioned 80 mbar. The pressure differential across the TD-controls itself may exceed 2 bar if the distribution pump head is high. In such cases, to avoid noise problems, the TD-controls should be installed well away from living quarters and the immediate pipework should be well muffled.

Subject to change without notice.

Pressure Differential Controls Type TDS

Characteristics

- Small dimensions
- Good regulating accuracy
- Nominal pressure PN 16
- Max. temperature 150°C
- Self-acting
- Low-noise control. (Tested according to ISO/DP 3822/1 - test results on request.)

Applications

The TDS controllers, which are made in four variants, have the following major applications:

Control of differential pressure, noise and dynamic balance. In individual users circuits and sub-mains within a large distribution network. For example in District Heating or Group Heating networks.

Control of by-pass between flow and return where 3-way valves or 2-way zone control valves are installed. To limit volume variations and maximum Δp .

Similarly for low water content boilers and devices requiring a minimum circulation irrespective of load conditions.

With the addition of a miniature solenoid valve in the impulse connection the valve can also be used to isolate a circuit with respect to time or temperature.

Function

The TDS controller can be installed in either the flow or return of the sub-circuits.

The high pressure line is connected to the adjustment side of the diaphragm housing and the low pressure line to the valve body side of the diaphragm.

Any change of differential pressure across the diaphragm - which is connected to the valve mechanism - above or below the set point will cause the diaphragm to change its position. If higher than set pressure the valve will move to close, if lower than set pressure the valve will move to open, until the system is once again in balance.

Adjustment of the differential pressure setting is made by rotating the adjusting handle clockwise or anticlockwise until the desired set point is reached (see diagram). The upper edge of the adjustment cap in conjunction with the scale marked on the spring guide tube is an indication of the actual setting. The scale moves into or out of the handle loading the valve and diaphragm. The set pressure is shown on a percentage scale in 10% increments.

Relation between Scale Setting and Differential Pressure

Design

The TDS controller is a spring loaded selfacting proportional controller consisting of a valve, a diaphragm and housing and two capillary tubes on either side of the diaphragm. The valve body, available in DN15 and DN20, is made of hot-pressed brass, and the seat and cone of stainless steel. The diaphragm housing is made of nudular cast iron, and the diaphragm itself is made of EPDM rubber with web reinforcement. If required, the TDS controller adjustment handle can be sealed, preventing unauthorised persons from altering the set point.

Subject to change, without notice.
Pressure Differential Controls Type TDS

According to the conditions, the TDS controller can be built into either the return pipe or the flow pipe in a suitable position and the small dimensions of the TDS controller make it easy to mount in most installations.

The diaphragm area is still large enough to give a sensitive response to small pressure variations; it is designed to be a compact controller without sacrificing performance.

Technical Data

Materials:

- Valve body	Hot-pressed brass (W. no. 2.0400 -
- Seat and cone	ASTM B283) Stainless steel
	(W. no. 1.4305 - AISI 303)
- Diaphragm	
housing	Nudular cast iron
	EN-GJS-400-15
	(W. no. 0.7040 -
	ÀSTM A395)
- Diaphragm	EPDM rubber with
	web reinforcement
	(ASTM D2000)
- Capillary	Copper (ASTM B42)
	2x1 m
Type of valve	Single seated
Valve characteristic	Linear (approx.)
Weight, incl. valve	2.5 kg

Subject to change, without notice.

Туре		TDS						
Setting range	bar	TDS15-1 0.02-0.1	TDS15-5 0.1-0.5	TDS20-1 0.02-0.1	TDS20-5 0.1-0.5			
Proportional band	mbar	16	80	16	80			
Max. thrust on stem	n N	20	00	200				
Nom. pressure PN	bar	1	6	16				
Max. rated travel	mm	-	7	7				
Max. temp. of liquid	°C	130 (*	150) ¹⁾	130 (150) ¹⁾				
Note		Incl. hot brass val k _{vs} =1.5, ر	pressed ve, Rp ½ ∆p =7 bar	Incl. hot brass val k _{vs} =2.4, ر	pressed ve, Rp ¾ ∆p =7 bar			

The max. pressure against which the controls can close Δp_L , depends on the valves and it is stated above. To avoid noice problems it is recommended that the pressure drop across valve Δp_v does not exceed 1 bar in living quarters.

 $^{1)}$ 150°C - Only if TD cotroller is installed below the valve.

Pressure Differential Controller Type TDL, PN 16, DN 20 – 32 mm

Characteristics

- Small dimensions
- Good regulating accuracy
- Nominal pressure PN 16
- Max. temperature 150°C
- Self-acting

Applications

The TDL controllers which are made in 6 variants have the following major applications:

Control of differential pressure, noise and dynamic balance. In individual users circuits and sub-mains within a large distribution network. For example in District Heating or Group Heating networks.

Control of by-pass between flow and return where 3 port valves or 2 port zone control valves are installed. To limit volume variations and maximum Δp . Similarly for low water content boilers and devices requiring a minimum circulation irrespective of load conditions.

With the addition of a miniature solenoid valve in the impulse connection the valve can also be used to isolate a circuit with respect to time or temperature.

Function

The TDL controller can be installed in either the flow or return of the sub-circuits.

The high pressure line is connected to the adjustment side of the diapraghm housing and the low pressure line to the valve body side of the diapraghm.

Any change of differential pressure across the diapraghm – which is connected to the valve mechanism – above or below the set point will cause the diapraghm to change its position. If higher than set pressure the valve will move to close, if lower than set pressure the valve will move to open, until the system is once again in balance.

Adjustment of the differential pressure setting is made by rotating the adjusting handle clockwise or anticlockwise until the desired set point is reached (see diagram). The upper edge of the adjustment cap in conjunction with the scale marked on the spring guide tube is an indication of the actual setting. The scale moves into or out of the handle loading the valve and diapraghm. The set pressure is shown on a percentage scale in 10 % increments.

Design

The TDL controller is a self-acting proportional controller consisting of a valve, a diapraghm and housing and two capillary tubes on either side of the diapraghm. The valve body is made of gun metal, and the seat and cone of stainless steel. The diapraghm housing is made of nodular cast iron, and the diapraghm itself is made of EPDM rubber with web reinforcement. If required, the TDL controller adjustment handle can be sealed, preventing unauthorised persons from altering the set point.

Installation

According to the conditions, the TDL controller can be built into either the return pipe or the flow pipe in a suitable position and the small dimensions of the TDL controller make it easy to mount in most installations. The diapraghm area is still large enough to give a sensitive response to small pressure variations; it is designed to be a compact controller without sacrificing performance.

Subject to change without notice.

Pressure Differential Controller Type TDL, PN 16, DN 20 – 32 mm

Technical Data

Materials:	
Valve body	RG5 CuSn5Zn5Pb5-C
Cone	Stainless steel
(V	V.no. 1.4305 – AISI 303)
Diapraghm ho	using Nodular cast iron
	EN-GJS-400-15
(W.n	o.0.7040 – ASTM A395)
Diapraghm	EPDM rubber with
	web reinforcement
	(ASTM D2000)
Capillary	2 pieces of 1 m, Cu
Pressure stage	PN 16

Type designation	TDL 1-20-1	TDL 1-20-5	TDL 1-25-1	TDL 1-25-5	TDL 1-32-1	TDL 1-32-5
Valve type	20 L1SB	20 L1SB	25 L1SB	25 L1SB	32 L1SB	32 L1SB
Pressure stage PN 16	•	•	•	٠	•	•
Max. temperature 150°C	•	•	•	٠	•	•
Max. diff. pressure, Δp , across the valve in bar	7	7	7	7	7	7
Overall valve length in mm	95	95	105	105	138	138
k _{vs} -value	5	5	7.5	7.5	12.5	12.5
Setting range in bar	0.02-0.1	0.1–0.5	0.02-0.1	0.1–0.5	0.02-0.1	0.1–0.5
Proportional band 10%	•	•	•	٠	•	•
Weight in kg, incl. valve	3.7	3.7	4	4	5.3	5.3
2 pcs capillary each 1 m enclosed, connection ISO 7 - R¼	•	•	•	•	•	•

Subject to change without notice.

Pressure Differential Controls Type TD66

3.9.04-D GB

Pressure differential controls, type TD, comprise a control valve, a diaphragm unit and 2 connecting capillaries.

The controls type TD66-4 and TD66-8 can be used with our wide range of 2-way control valves, in sizes from 4 mm up to 80 mm. For further information see technical data, "Quick Choice" no. 9.0.00 and data sheets on individual valves.

Type TD66 (TD66-4 and -8) is spring loaded and is available in several setting ranges. The differential pressure required is set by turning the handle, the upper edge of which acts as a pointer on the scale.

Dimensions

Technical Data

Туре		TD66-4	TD66-8					
Setting range	bar	0.15-0.3	0.15-0.3	0.2-0.8	0.7-1.3	1.35-1.5		
Proportional band		10%	10%	30%	30%	20%		
Max. thrust on stem	Ν	400	400 800					
Nom. pressure PN	bar	16 ¹⁾	16 ¹) 16 ¹)					
Max. rated travel	mm	14	14 14					
Max. temp. of liquid	°C	120 (150) ²⁾	120 (150) ²⁾ 120 (150) ²⁾					
Weight	kg	13						
Note		Primarily in connection with double seated valves up to DN 80 mm (Single seated valves only up to DN 25 mm, and not balanced valves - type M1FB, G1FB, H1FB) ³⁾						

¹⁾ PN is only valid for the diaphragm housing. See also data sheets for the valves.

 $^{2)}$ 150°C - Only if TD controller is installed below the valve.

³⁾ Balanced and larger single seated valves only to be selected if an increased variation of the desired diff. pressure Δp is allowable. (An increase of the inlet pressure may result in a substantial increase of Δp).

Subject to change without notice.

Self-acting Differential Pressure Controls Type TD56-2G (PN 25) and TD56-2M (PN 16), DN 15 - 80 mm

Characteristics

- · Exact regulating
- Nominal pressure PN 25 / PN 16
- Self-acting
- · Easy to install and use

Applications

This unit is designed for controlling of differential pressure in individual users circuits and sub-mains within a large distribution network. For instance in district heating or group heating networks. Control of by-pass between flow and return where 3 port valves or 2 port zone control valves are installed to limit volume variations and maximum Δp . Similarly for low water content boilers and devices requiring a minimum circulation irrespective of load conditions.

Function

The medium flows through the free area between the seat and cone in the direction indicated by the arrow on the body. The high pressure line is connected to the diaphragm housing via C1 and the low pressure line to the diaphragm housing via C2. Any change of differential pressure across the diaphragm which

is connected to the valve mechanism above or below the set point will cause the diaphragm to change its position. If higher than set pressure the valve will move to close, if lower than set pressure the valve will move to open, until the

system is once again in balance. Adjustment of the differential pressure setting is made by rotating the setpoint adjuster clockwise or anticlockwise until the desired set point is reached.

The valve cone is pressure balanced. The pressure acts onto the bottom and top surface of the cone at the same time. In this way, the forces produced by the media are compensated.

The differential control valve is a selfacting unit consisting of a valve, springs, an actuator and two capillary tube connected on the upper and lower side of the actuator. The valve body is made of nodular cast iron. The seat and cone are made of stainless steel. The diaphragm is made of EPDM or NBR rubber, depending on the medium to be controlled.

Quality assurance

9001 certification and are pressure and leakage tested before shipment.

be supplied with relevant test certificates from recognized classification societies.

Installation

According to the conditions, the TD56-2 can be built into either the return pipe or the flow pipe in a suitable positions. The diaphragm area is large enough to give a sensitive response to small pressure variations.

Specificatio	ons			
Туре	Flange connection DN in mm	k_{vs}-value m³/h	Lifting height mm	Weight kg
15 TD56-2G/M	15	4	7.5	21
20 TD56-2G/M	20	6.3	7.5	23
25 TD56-2G/M	25	10	9	24
32 TD56-2G/M	32	16	10	27
40 TD56-2G/M	40	25	11	29
50 TD56-2G/M	50	35	11.5	33
65 TD56-2G/M	65	58	14.5	38
80 TD56-2G/M	80	80	16	55

Set point bar 0.4 - 0.8 0.6 - 1.5	1 - 2.5	2 - 5
---	---------	-------

Subject to change without notice.

Clorius Controls A/S

Kajakvej 4 · 2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

All valves are manufactured under an ISO

For marine applications the valves can

GB-1

3.9.06.01-G

GB-2

Technical Data

Materials:	
- TD56-2M valve body	Nodular cast iron
-	EN-GJS-400-15
- TD56-2G valve body	Nodular cast iron
	EN-GJS-400-15
- Cone, Seat	Stainless steel
- O-ring	A70H FEPM
- Bolts, nuts	24 CrMo 4/A4
- Stag bolt, Set point a	adjuster
	St. 42, 1.0503
	Electroplated
- Spindle housing	St. 42, 1.0503
	Electroplated
- Spring	W. Nr. 1.4568
	powder coated
- Diaphragm housing	Steel 1.0122
- Diaphragm	NBR / EPDM
Nominal pressure	TD56-2G - 25 bar
	TD56-2M - 16 bar
Seating	Single-seated
Valve characteristic	Quadratic
Leakage rate	≤ 0.05% of k _{vs}
Temperature range	See pressure/
	temperature
	diagram
Flanges drilled accord	ling to:
- TD56-2G	EN 1092-2 PN 25
- TD56-2M	EN 1092-2 PN 16
Counter flanges	DIN 2634
Colour (valve body, co	over):
- TD56-2G	Blue
- TD56-2M	Grey

Definition of kvs-value

The k_{vs}-value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

Subject to change without notice.

Туре	L mm	H1 mm	H mm	C mm	b mm	D (dia.) mm	k (dia.) mm	d mm dia. (number)
15 TD56-2G/M	130	60	582	220	14	95	65	14 x (4)
20 TD56-2G/M	150	65	595	220	16	105	75	14 x (4)
25 TD56-2G/M	160	70	601	220	16	115	85	14 x (4)
32 TD56-2G/M	180	75	618	220	18	140	100	19 x (4)
40 TD56-2G/M	200	85	630	220	19	150	110	19 x (4)
50 TD56-2G/M	230	95	660	220	19	165	125	19 x (4)
65 TD56-2G/M	290	110	685	220	20	185	145	19 x (8)
80 TD56-2G/M	310	155	708	220	20	200	160	19 x (8)

Pressure Reducing Valves type G1PR (PN 25) 3.9.08-J and H1PR (PN 40), DN 15 - 80 mm

• HIPR Valve UUUy	
 G1PR valve body 	Nodular cast iron
	EN-GJS-400-15
 Cone, Seat 	Stainless steel
• O-ring	A70H FEPM
 Bolts, nuts 	24 CrMo 4/A4
 Stag bolt, Set point ad 	juster
	St. 42, 1.0503 Electroplated
 Spindle housing 	St. 42, 1.0503 Electroplated
 Spring 	W. Nr. 1.4568 powder coated
 Diaphragm housing 	Steel 1.0122
 Diaphragm 	NBR / EPDM
Nominal pressure	PN 25 - G1PR
	PN 40 - H1PR
Seating	Single-seated
Valve characteristic	Quadratic
Leakage rate	≤ 0.05% of k _{vs}
Temperature range	See pressure/ temperature
	diagram
Flanges drilled according	g to:
• H1PR	EN 1092-1 PN 40
• G1PR	EN 1092-2 PN 25
Counter flanges	DIN 2634
Colour (valve body, cover	r):
• H1PR	Green
• G1PR	Blue

SPECIFICATIONS

Туре	L	H1	н	С	Ь	D (dia.)	k (dia.)	d mm dia.	Flange connection	k _{vs} -value	Lifting height	Weight
	mm	mm	mm	mm	mm	mm	mm	(number)	DN in mm	m³∕h	mm	kg
15 G/H1PR	130	60	582	220	14	95	65	14 x (4)	15	4	7.5	21
20 G/H1PR	150	65	595	220	16	105	75	14 x (4)	20	6.3	7.5	23
25 G/H1PR	160	70	601	220	16	115	85	14 x (4)	25	10	9	24
32 G/H1PR	180	75	618	220	18	140	100	19 x (4)	32	16	10	27
40 G/H1PR	200	85	630	220	19	150	110	19 x (4)	40	25	11	29
50 G/H1PR	230	95	660	220	19	165	125	19 x (4)	50	35	11.5	33
65 G/H1PR	290	110	685	220	20	185	145	19 x (8)	65	58	14.5	38
80 G/H1PR	310	155	708	220	20	200	160	19 x (8)	80	80	16	55

SET POINT bar

CHARACTERISTICS

- Exact regulating
- Nominal pressure PN 25 / PN 40
- Self-acting
- Easy to install and use

APPLICATIONS

This unit is designed for maintaining the pressure downstream of the valve to an adjusted set point value.

DESIGN

The pressure reducing valve is a self-acting unit consisting of a valve, springs, an actuator and one capillary tube connected on the upper side of the actuator. The valve body is made of nodular cast iron or cast steel. The seat and cone are made of stainless steel. The diaphragm is made of EPDM or NBR rubber, depending on the medium to be controlled.

PRESSURE/TEMPERATURE DIAGRAM

* For temperature above 100°C a compensation chamber is needed.

QUALITY ASSURANCE

All valves are manufactured under an ISO 9001 certification and are pressure and leakage tested before shipment. For marine applications the valves can be supplied with relevant test certificates from recognized classification societies.

FUNCTION

The medium flows through the free area between the seat and cone in the direction indicated by the arrow on the body.

The position of the valve cone determines the flow rate and consequently the pressure ratio across the valve.

The downstream pressure is transmitted through the compensation chamber and the capillary to the diaphragm, where it is converted into a positioning force. This positioning force is adjusting the cone with dependence on the force of the operating springs. The spring force can be adjusted by using the setpoint adjuster. The valve cone is pressure balanced.

The pressure acts onto the bottom and top surface of the cone at the same time. In this way, the forces produced by the media are compensated.

INSTALLATION

The pressure reducing valve must be installed in a horizontal pipe with the actuator directed downwards. The flow through the valve must coincide with the arrow on the valve body.

STRAINER

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.

COMPENSATION CHAMBER

For steam applications and media temperature above 100°C a compensation chamber is needed.

DEFINITION OF KVS-VALUE

The $k_{vs}\text{-value}$ is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, $\Delta p_{v'}$ of 1 bar.

Subject to changes without notice.

SECTION 4

Microprocessor-based Controller type ER 2000 for Electronic Temperature Control

4.6.01-H GB-1

Characteristics

- PI and PID performance
- Easy operation
- For heating and cooling systems in maritime and industrial installations
- Manual- / automatic changeover
- Robust self-optimization
- Alarm indicating a deviation from set point, positive or negative
- Only one sensor element Pt 100 required for control and temperature indication
- User-defined operation level
- 2- or 3-positional output for controlling the actuator

Applications

The ER 2000 controller is used for constant temperature control. It is suitable for all heating and cooling control systems. The controller is primarily intended for marine installations and other industrial applications - such as cooling water and lubricating oil installations, flow temperature control etc.

Design

The ER 2000 controller is designed for panel mounting.

For easy start-up it has optimization for automatic determination of favourable control parameters. The optimization starts when changing the set point or when switching over from manual mode to automatic control. The optimization can be disregarded.

For easy operation it has three keys two for scrolling or changing values and an enter key. Two digital displays show the process variable and the set point. 3 LEDs indicate actuator opens, actuator closes and alarm.

The controller can be switched from auto mode to manual mode. In manual mode the actuator can be opened, closed or stopped in a certain position.

Three different alarm settings are possible:

- A: Alarm at a deviation from the set point SP
- B: Alarm at a fixed limit value
- C: Alarm at leaving a band around the set point SP.

It can operate either as a three position or as a two position controller and has adjustable proportional band, integral action time and derivative action time.

Function

The temperature input comes via a Pt 100 sensor with a single sensing element. The measured value of the controlled variable is compared with the set point value and adjusted via a PI or a PID control structure.

The ER 2000 can act as either a heating controller, the actuator closes at rising temperature, or as a cooling controller, the actuator opens at rising temperature. The ER 2000 permits direct reading of the actual temperature value (PV) and it is secured from failure in the measuring circuit, i.e. the controller can be set to give either a closing, an opening or remain in current position command in case of sensor short circuit or sensor break. The error message Err appears in the LED display PV.

Communication

The controller is equipped with a RS 485 communication module.

Technical Data

Line voltage 230 V AC 115 V AC* -15 % / +10 %, 50 / 60 Hz 24 V AC* *- optional (please specify) Power consumption approx. 7 VA Weight approx. 1 kg Permissible ambient temperature - Operation 0 to 50°C - Transport and storage -25 to + 65°C Degree of protection Front: IP 65 according to DIN 40050 Terminals: IP00 Design For control panel installation 96 x 96 x 135 mm (W x H x D) panel cut out 92 x 92 mm

Installation position

arbitrary

Input

Pt100, 0°C to 300°C Connection in three - wire system Option: 4-20 mA

Output 2- or 3-point Option: 4-20 mA

Measuring accuracy 0.1% of the measuring range

Displays Two 4 - digit 7 segment displays, LED, red, character height = 13 mm

Alarm Alarm type A, B, C; working contact normally closed circuit principle

Relay Switching capacity: 250 V AC / 3 A Spark quenching element

Data protection Semi - conductor memory

Subject to changes without notice.

Microprocessor-based Controller type ER 2000 for Electronic Temperature Control

Subject to changes without notice.

Microprocessor-based Controller type ER 3000 for Electronic Temperature Control

4.6.05-D GB-1

Characteristics

- PI-PID cascade controller
- · Easy operation
- For cooling systems in maritime installations
- Manual- / automatic changeover
- · Robust self-optimization
- Alarm indicating at deviation from set point, positive or negative
- User-defined operation level
- 2- or 3-positional output for controlling the actuator

Applications

The ER 3000 controller is used for constant temperature control. It is specially designed for large engine jacket cooling water systems where conventional single loop controllers cannot maintain a constant and precise temperature.

Design

The ER 3000 controller is designed for panel mounting.

For easy start-up it has optimization for automatic determination of favourable control parameters. The optimization starts when changing the set point or when switching over from manual mode to automatic control. The optimization can be disregarded.

For easy operation it has four keys - two for scrolling or changing values, an enter key and a key for choosing manual or automatic control. Two digital displays show the process variable and the set point. 7 LEDs indicate alarm, actuator opens, actuator closes, slave control, setpoint raising / lowering and manual mode.

The controller can be switched from auto mode to manual mode. In manual mode the actuator can be opened, closed or stopped in a certain position.

Three different alarm settings are possible:

- A: Alarm at a deviation from the set point SP
- B: Alarm at a fixed limit value
- C: Alarm at leaving a band around the set point SP

The 3 alarm settings include alarm in case of sensor fault.

It can operate either as a three position or as a two position controller and has adjustable proportional band, integral action time and derivative action time.

Function

The controller operates with two sensor inputs. One Pt 100 sensor is placed at the outlet from the engine and one Pt 100 sensor with a built-in 4-20 mA transmitter is placed at the inlet to the engine. The measured values of the controlled variables are compared with the set point value and adjusted via a PI or a PID control structure.

When used for large engine jacket cooling water systems the controller must be set up as a cascade controller

The cascade controller has two process variables - master and slave.

The cascade controller compares the measured master value (outlet from the engine) with its setpoint and adjusts the setpoint of the slave variable (inlet to the engine) if neccesary.

Technical Data

Line voltage 230 V AC

24 V AC*	%, 50 / 60 HZ
*- optional (please spec	ify)
Power consumption	approx. 7 VA
Weight	approx. 1 kg

Permissible ambient temperature

- Operation 0 to 50°C - Transport and storage -25 to + 65°C

Degree of protection Front IP 65 according to DIN 40050 Terminals: IP00

Design

For control panel installation 96 x 96 x 135 mm (W x H x D) panel cut out 92 x 92 mm

Installation position arbitrary

DI - feed voltage and measuring transducer feed voltage 24 V DC, Imax. = 60 mA

Analog inputs

Pt100, 2.4 = 0°C to 300°C or 2.2 = 0°C to 400°C or 2.50 = -50°C to 250°C Connection in three - wire system 0/4 to 20 mA, input resistance = 50 Ohm 0/2 to 10 V, input resistance = 100 KOhm

Measuring accuracy 0.1% of the measuring range

Digital inputs

high active, Ri = 1 k W; 0V DC = low

- 15 V to 24 V DC = high
- Analog output for process variable 0 to +10 V corresponds with 0 to 300°C (2.4) or 0 to 400°C (2.2) or -50°C to 250°C (2,50), $I_{max} = 2$ mA

Displays

Two 4 - digit 7 segment displays, LED, red, character height = 13 mm

Alarms Alarm type A, B, C; working contact normally closed circuit principle

Relay

Switching capacity: 250 V AC / 3 A Spark quenching element

Data protection Semi - conductor memory

Subject to changes without notice.

Microprocessor-based Controller type ER 3000 for Electronic Temperature Control

4.6.05-D GB-2

Controls A/S

Subject to changes without notice.

Microprocessor-based controller type ER 2000-P for electronic pressure control

4.6.07-D GB-1

Characteristics

- PI and PID performance
- Easy operation
- For heating, cooling and pressure systems in maritime and industrial installations
- Manual- / automatic changeover
- Robust self-optimization
- Alarm indicating a deviation from set point, positive or negative
- User-defined operation level
- 2- or 3-point output for controlling the actuator

Applications

The ER 2000-P controller is used for constant pressure control. It is suitable for all heating and cooling control systems. The controller is primarily intended for marine installations and other industrial applications.

Design

The ER 2000-P controller is designed for panel mounting.

For easy start-up it has optimization for automatic determination of favourable control parameters. The optimization starts when changing the set point or when switching over from manual mode to automatic control. The optimization can be disregarded.

For easy operation it has three keys two for scrolling or changing values and an enter key. Two digital displays show the process variable and the set point. 3 LEDs indicate actuator opens, actuator closes and alarm.

The controller can be switched from auto mode to manual mode. In manual mode the actuator can be opened, closed or stopped in a certain position.

Three different alarm settings are possible:

- A: Alarm at a deviation from the set point SP
- B: Alarm at a fixed limit value
- C: Alarm at leaving a band around the set point SP.

It can operate either as a three position or as a two position controller and has adjustable proportional band, integral action time and derivative action time.

Function

The pressure input comes via a 4-20 mA signal. The measured value of the controlled variable is compared with the set point value and adjusted via a PI or a PID control structure.

The ER 2000-P permits direct reading of the actual temperature value (PV) and it is secured from failure in the measuring circuit, i.e. the controller can be set to give either a closing, an opening or remain in current position command in case of sensor short circuit or sensor break. The error message Err appears in the LED display PV.

Communication

The controller is equipped with a RS 485 communication module.

Technical Data

Line voltage 230 V AC 115 V AC* 24 V AC* *- optional (please spec	9 %, 50 / 60 Hz ify)
Power consumption	approx. 7 VA
Weight	approx. 1 kg
Permissible ambient temp - Operation - Transport and storage	erature 0 to 50°C -25 to + 65°C
Degree of protection Front: IP 65 according t Terminals: IP00	o DIN 40050
Design For control panel install 96 x 96 x 135 mm (W x panel cut out 92 x 92 m	ation H x D) m
Installation position	arbitrary
Inputs	4-20 mA
Outputs Option:	2- or 3-point 4-20 mA

Measuring accuracy

0.1% of the measuring range

Displays Two 4 - digit 7 segment displays, LED, red, character height = 13 mm

Alarm

Alarm type A, B, C; working contact normally closed circuit principle

Relay

Switching capacity: 250 V AC / 3 A Spark quenching element

Data protection Semi - conductor memory

Subject to changes without notice.

Microprocessor-based controller type ER 2000-P for electronic pressure control

Subject to changes without notice.

Temperature sensors type FF 12, FF 15 and4.7.01-HFF12-2 / 4-20mA for electronic temperature regulationGB-1

Characteristics

- Resistance sensor Pt 100 Ω/0°C.
- Standardized design according to DIN 43765.
- Robust and reliable sensor for use in gaseous and liquid media, e.g. air, steam, gas, water or oil.
- · For medium temperature up to 200°C.
- · For pressures up to 50 bar.
- Internationally recognized for marine purposes
- To be used together with ER regulators. See data sheet no. 4.6.01 and 4.6.05.

Applications

The temperature sensors are used for registration of temperatures in tubes, tanks and ducts.

The output signal of the sensor is used as reference for our ER regulators.

Type FF 12-2 / 4-20 mA is equipped with a built-in 2-wire transmitter with 4-20 mA output signals. The sensor is used in conjunction with controller type ER 3000 (see datasheet 4.6.05).

Due to small installation dimensions and internationally widespread measuring element the sensor is especially fitted for marine purposes, just as the applications on land are innumerable.

Design

The sensor consists of a pocket, a connection head and a measuring insert. The pocket is constructed of acid proof steel and can stand temperature/pressure as stated in the diagram.

The connection head is made of lightalloy metal and complies with IP 65.

The measuring insert contains one or two measuring windings and may be fixed or exchangeable. The supply lines of the measuring insert are insulated from each other and from the insert tube with a ceramic insulator. Exchangeable measuring insert is mounted in the connection head by means of two spring loaded screws. This means that the measuring insert is always pressed towards the bottom of the pocket, and vibrations from the surroundings will not be transferred to the measuring insert, just like different heat evolutions of pocket and measuring insert are adjusted. Our standard types are shown in the

below diagram.

Subject to change, without notice

Standard types Туре Measuring Comments FF 12-2 With exchangeable measuring insert 1 x Pt 100 FF 12-R Measuring insert for FF 12-2 FF 15-2 With exchangeable measuring insert 2 x Pt 100 FF 15-R Measuring insert for FF 15-2 FF 12-2 / 4-20 mA 4-20 mA With exchangeable measuring insert

Data for Pockets

According to DIN 43673 Material X10CrNiMoTi1810 W. No. 1.4571 corresponding to AISI 316 Ti Connection: G1/2B. Permissible torque moment: 50 Nm. Permissible flow velocities: 25 m/s Air: Hot steam: 25 m/s Water: 3 m/s Reaction times at liquid velocity: 0.4 m/sec: t 1/2: 7.5s t 9/10: 21s t = total temperature step Max. pressure: 50 bar Max. temperature: 200°C Weight incl. insert: 1 kg

Data for Measuring Insert

According to DIN 43762 The basic value of the measuring resistance corresponds to DIN 43760. Measuring range: -50°C to + 200°C Measuring resistance: $1 \times Pt \ 100 \Omega \text{ or}$ $2 \times Pt \ 100 \Omega$ Max. temperature: 200°C.

Insulation resistance between measuring resistance and insert tube is over 1000 M Ω at room temperature. The insert is made of stainless steel.

Spring travel: 8 mm Two-core coupling Resistance of inner cables for supply and return line of the measuring insert: $\leq 0.07 \ \Omega/m$ Weight of loose insert: 0.06 kg

Data for Connection Head

According to DIN 43729, form B Material: Light-alloy metal Seal: IP 65 Ambient temperature: max. 100°C

Subject to change, without notice.

Characteristics

- Small outer dimensions in modern design
- Large closing force
- Easy to fit and adjust
- Reversible spring return
- Casing IP 44, splash proof
- Lifetime lubricated gearbox
- 2-4 safety functions
- Build-in potential free alarm relay

Function

Safety Set SM6 is used for heating, cooling, ventilation and industrial systems, no matter whether the medium is water, steam or oil.

Applications

Safety Set SM6 is developed for all Clorius valves up to 150 mm, but may be used for some other valve brands of corresponding size and function, too. It is consequently well suited for modernisation of existing systems.

Dimensioning

For sizing of control valves and for closing pressures, please see "Quick Choice" leaflet no. 9.0.00.

Design

Safety Set SM6 consists of a valve motor, a control box and a dual thermostat.

The valve motor is driven by a gear motor. It is a single phase synchronous motor with capacitor start. The valve motor is delivered for 24 V AC. The build-in spring return ensures a closing time of max. 4 sec. By temperatures higher than 170° C, a KS-4 or KS-6 cooling unit is to be mounted between valve and motor.

The gear is mounted in a closed gearbox of die-cast aluminium. All gear wheels and bearings are life-time lubricated.

The stroke of the valve motor can be adjusted continuously to the valve between 4 and 22 mm by means of a crank mechanism with a scale.

The valve motor is equipped with a replaceable gasket box with a Teflon washer. An overload protection spring is inserted between the crank mechanism and the gasket box.

The spring return is released when the power disappears from the holding coil, closing the valve completely. A timer in the control box ensures that the motor is not turned on again before 10 sec. after a spring return release. This function protects against starting the motor before the spring return function has terminated.

The control box contains:

- a 230/24 V AC transformer for the valve motor
- the 10 sec. timer for the spring return
- a potential free alarm switch
- terminal blocks for connections to the valve motor, the dual thermostat, other safety equipment, an alarm, and power.
- a build-in fuse protecting against overload and short-circuiting.

The dual thermostat is set to the normal close-down temperature, e.g., 90°C, where the valve is to be closed. It further includes an overheating thermostat for spring return emergency close-down at 105°C. This ensures correct function, even if, e.g., the normal thermostat should fail. For additional safety, the overheating thermostat has to be reset manually after a break.

Build-in safety functions Power failure

The build-in spring return closes the valve. When the power returns, the motor starts again after 10 sec. and moves the valve back to its original position.

Overheating protection

The spring return of the motor closes the valve on a signal from the 105°C overheating thermostat or other safety devices. The overheating thermostat has manual reset.

Other protections possibilities:

Against circulation failure

The motor closes the valve when a flow switch placed in the secondary circuit releases the spring return, e.g. by a pump failure. When circulation returns, the valve reopens automatically after 10 sec.

Against pressure failure

By means of a pressure switch the motor will release the spring return if the water pressure in the secondary circuit is reduced (static pressure).

Alarm function

The build-in potential free alarm relay is activated at emergency close down (spring return).

Subject to change without notice.

Safety Set SM6

GB-2

Accessories Cooling unit KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Cooling unit KS-6

Cooling unit with built-in bellows gland substitutes the stuffing box of the valve motor. Must be applied at valve temperatures above 250°C.

Subject to change without notice.

Clorius CONTROLS

Equipment diagram

for steam/hot-water heating systems, where the primary circuit is dimensioned for the maximum pressure of the steam/hot-water.

FOR 2 & 3-WAY VALVES TYPE G/L/M/S 2FM-T & G/L/M/S 3FM-T

GB-1

4.11.08-G

RECOMMENDED ACTUATOR TYPES FOR G3FM-T VALVES

Valve size	Actuator type			
	DP 5 bar	DP 10 bar	DP 16 Bar	
DN 65				
DN 80	CAR 009	CAR 009	CAR 009	
DN100				
DN125		CAR 019	CARUIS	
DN 150	CARUIS	CAR 028	CAR 028	
DN 200				
DN 250				
DN 300	CAR 060		CAR 100	
DN 350		- CAR 100		
DN 400	CAR IUU			
DN 450				
DN 500	CAR 200	CAR 200		
DN 600				

SPECIFICATIONS

TECHNICAL DATA

Casing:	Watertight IP67, Nem	na 4 and 6	
Ambient temp.:	-30°C to +70°C, 150°C	C/1 hr.	
Power Supply:	120/230 VAC, 1-Phas	e (50Hz/60Hz)	
	380/400/440 VAC, 3-	Phase	
	(50Hz/60Hz)		
	24 VDC (CAR 015-028	3)	
Torque switches:	Open/Close		
Limit switches:	Open/Close, addition	al limit	
	switches on request		
Stall protection:	Built-in Thermal Prote	ection	
	Cut-off at 150°C ± 5°C	C / Reset at	
	97°C ±15°C		
Travel angle:	90° ± 5°		
Indicator:	Continuous Position I	ndicator	
Manual override:	AUTO Declutching Me	echanism	
Worm gear:	Permanently lubricated and		
	Self-locking		
Mechanical stops:	External Adjustable L	imit Stops	
Space heater:	20 W (115/230 VAC, 2	24 VDC)	
	Anti-Condensation		
Cabeling:	2 x R ¾″		
Lubrication:	Grease NLGI Grade 2	(EP-Type)	
Materials:	Steel, Aluminium Alloy, Al Bronze		
External coating:	Anodizing and Dry Powder Epoxy		
Duty Cycle:	On-Off:	52 50%	
	Modulating:	54 75%	

APPLICATION

Electric valve actuator type CAR is specially designed to meet the demands of the powerful low frequency vibration environments in marine installations.

The main applications are cooling of freshwater, sea water and lubricating oil systems for main and auxiliary engines. The actuator is used for Clorius 2 or 3-way valves type L3FM-T, M3FM-T , G3FM-T and S3FM-T

MOUNTING

For mounting and starting up , the instructions delivered with the actuator must be followed carefully.

SERVICE

No special service is needed. It is recommended to check and grease the actuator at every docking or every three years.

Туре	Max. torque Nm	Operating time sek/90° (50/60 Hz)	Weight kg	No. of handle turns	Current draw max. A (1-phase 120V)	Current draw max. A (1-phase 230V)	Current draw max. A (3-ph 400V)	Current draw max. A (24 VDC)
CAR 009	90	17/14	11	8.5	1,2	0,6	0,18	2,2
CAR 019	186	17/20	13	10	1,5	0,7	0,28	-
CAR 028	274	24/20	17	12.5	2	0.7	0.3	7
CAR 060	588	29/24	22	14.5	3.1	1.18	0.5	-
CAR 100	981	29/24	25	14.5	4.5	2	0.87	-
CAR 150	1471	87/72	68	43.5	3.1	1.18	0.5	-
CAR 200	1962	87/72	70	43.5	4.5	1.8	U.8	-

4.11.08-G

FOR 2 & 3-WAY VALVES TYPE G/L/M/S 2FM-T & G/L/M/S 3FM-T

GB-2

DIMENSION SKETCH CAR 009 - 100

CAR 150 - 200

Туре	CAR 009	CAR 019	CAR 028	CAR 060	CAR 100	CAR 150	CAR 200
Flange	F07	F07, F10	F12, F10	F14, F12		F16,	F14*
C1	-	102	125	14	10	16	5
C2	82	70	102	12	25	14	0*
A1	-	M10	M12	M	16	M14*/	M16*
A2	M8	M8	M10	M	12	M	20
В	12	15	18	2	2	3	0
D(Max**)	22	22	32	4	2	7	5
<u> </u>	55	57	75	8	5	10	0
F	43	43	52	5	9	12	6
G	2	2	2		2		;
<u>H</u>	60	60	70	7	8	7	8
	113	139	159	19	91	19	1
	213	213	250	28	33	28	3
K	-	-	-	-		19	5
_L	102	120	145	17	75	26	6
M	56	77	83	9	9	9	9
<u>N</u>	175	184	202	22	26	22	6
	102	102	125	17	70	17	0
<u> </u>	-	-	-	-		1	6
R	108	108	130	17	78	17	8
<u> </u>	68	85	99	11	16	11	6
<u> U </u>	-	-	-	-		38	8
V	-	-	-	-		31	8
W	-	-	-	-		55	6
<u>X</u>	231	261	285	32	25	32	5
Y	181	224	258	30)7	30	17
Z	273	273	320	36	51	36	1
* For optional alternative flanges ** Maximum dimension including keyway							

Clorius

FOR 2 & 3-WAY VALVES TYPE G/L/M/S 2FM-T & G/L/M/S 3FM-T

4.11.08-G

GB-3

ACCESSORIES

CAR PROPORTIONAL CONTROL UNIT PCU PB90

Command signal input	4-20 mA, nominal input imped- ance 150 Ohm, jumpers I1 and 12 0-10 V, nominal input impedance 260k Ohm, jumper V1	
Analogue feed- back signal	4-20 mA, self powered, can drive up to 300 Ohm	
Fuse	3,15 AT 5x20 mm, mounted on the PB90 card	
Resolution	Approx. 0,3%	
Conversion	12 bit maximum. Normal range (4-20 mA) = 1/3200.	
Position board. Characteristic of feedback element and actuator system response affect the true performance.		

CAR 009-200

CAR 009-200

CAR CURRENT POSITIONTRANSMITTER CPT

- For continuous, analogue feed back signal 4-20 mA
- R/I Transmitter

CLS DLS CTS OTS

• The electronic components are protected against dirt and similar

Subject to changes without notice.

FOR 2 & 3-WAY VALVES TYPE G/L/M/S 2FM-T & G/L/M/S 3FM-T

4.11.08-G

GB-4

ACCESSORIES

CAR POTENTIOMETER PIU

- For CAR 009 CAR 250
- For continuous position feedback from 0º to 90º
- The whole unit is built into the actuator
- Potentiometer 1k Ohm, senses the actuator position during the whole turning movement
- Mounting details included
- Resistance 1k Ohm
- Resistance tolerance ±20%
- Linearity ±1%
- Max load 1W at +70 °C
- CLS : CLOSE LIMIT SWITCH (250VAC 6A) DLS : OPEN LIMIT SWITCH (250VAC 6A) CTS : CLOSE TORQUE SMITCH (250VAC 6A) OTS : OPEN TORQUE SMITCH (250VAC 6A) TP : THERMAL PROTECTOR (250VAC 15A)

CAR 009-200

Subject to changes without notice.

SECTION 6

Pneumatic Actuator Series S

- · Linear characteristic.
- Multispring diaphragm actuator.
- Compact design with low weight.
- Diaphragm with vulcanised terylene support secures a long and safe life-time.

The pneumatic actuator is powerful with a high control speed compared to electric actuators.

The linear actuator has a simple and light design with a minimum of moving parts. The pneumatic actuator are also low maintenance due to the simple design and the few moving parts.

The linear actuator is ideal for on/off and control functions of globe valves.

The spring loaded actuator offers the possibility for a fail-safe function, the safety installation is low cost compared to example battery backup.

The pneumatic actuator can be used in Eex areas, without extraordinary encapsulation or other precautions.

Dimension sketch

Applications

Pneumatic actuator for actuating and control of Clorius valves in various environments.

Relevant datasheets for accessories to the S actuators:

- Positioners	6.6.01, 6.6.02
- Filter regulators	6.8.01
- Controller ER2000	4.6.01
- Sensor PT100	4.7.01
- Pneumatic controller S8	0 67.01

- Pneumatic controller S80 6.7

Design

Compact pneumatic actuator with rolling diaphragm and multiple internal compression springs for operating Clorius valves. Reinforced rolling diaphragm guarantees long lifetime and reliable, safe operation. Maintenance or change of operating method does not require any speciel tools.

6.5.01-E

GB-1

Technical Data

Material:	
- Body	Polyester coated steel
- Stem	Stainless steel
- Tie rods	Stainless steel AISI 316
- Mounting plate	Polyester coated steel
- O-rings	NBR (Nitrile rubber)
- Diaphragm	Neoprene rubber
	w/terylene support
- Springs	Galvanized steel
Air quality	Dry and filtrated air,
	non aggressive
	gasses
Air supply	Max. 6 bar
Air supply connect.	1/8" RG Female
Temperature	-25°C to +115°C
Acting mode:	
- Type SC: Spring of	lose / Air open(NC)
- Type SO: Spring of	open / Air close (NO)
	,

Ξ ĪTĪ d d H1 Travel DA Туре Ø mm Ø mm mm mm 160 237 20 S16 25 35 250 277.5 20 S25 S34 32 340 350 33,5

DA

Subject to changes without notice.

Actuator	Туре	Force	Travel (max)	Min. pressure to close valve	Min. pressure to open valve
S16	SC	1270 N	20mm	-	1,1 Bar
510	SO	925 N	20mm	0,8 Bar	-
0.05	SC	9090 N	20mm	-	2,9 Bar
525	SO	1740 N	20mm	0,6 Bar	-
S34	SC	16100 N	33,5mm		3,2 Bar
	SO	-	-		-

Note: Max. pressure for actuator is 6 Bar.

Selection of liniar pneumatic actuators

Valve size DN	Valve type	Max. ∆P across valve	Pneumatic actuator type	
15	L1S, L1SB, M1F, M1FBN, G1F, G1FBN, H1F, H1FBN	16	S16	
	L2S, M1FBN, M2F, G1FBN, G2F, H1FBN, H2F	16		
20	L1S, L1SB, L3S	10	S16	
	M1F, G1F, H1F	7,5		
25	L1SB, L2S, M1FBN, M2F, G1FBN, G2F, G1FB, H1FBN, H2F, H1FB	16	S16	
25	M1F, G1F, H1F	5	516	
22	L1SB, L2S, G1FBN, G2F, H1FBN, H2F, M1FBN, M2F	16	616	
52	L3S, M3F, G3F, H3F	10	510	
	L2S, G2F, M2F, H2F	16		
40	M1FBN, G1FBN, H1FBN	10	646	
40	M3F, G3F, H3F	7,5	516	
	L3S	5		
	L2S, G2F, M2F, H2F	14		
50	M1FBN, G1FBN, H1FBN	7,5	S16	
	L3S, M3F, G3F, H3F	5		
65	L3F, M1FBN, M2F, M3F, G1FBN, G2F, G3F, H1FBN, H2F	16	S25	
80	L3F, M1FBN, M2F, M3F, G1FBN, G2F, G3F, H1FBN, H2F	16	S25	
100	L3F, M2F, M3F, G2F, G3F, H2F	16	S25	
125	L3F, M2F, M3F, G2F, G3F, H2F	16	S25	
150	L3F, M2F, M3F, G2F, G3F, H2F	16	S25	
200	L3FM, M3FM, G3FM	16	S34	
250	L3FM, M3FM, G3FM	10	S34	
300	L3FM, M3FM, G3FM	10	S34 (on request)	
Where the o Where man	lifferential pressure is higher than noted S16 must be replaced with S2 ual override is needed S16 must be replaced with S25	25.		

Pneumatic actuators type AD and ADHW 6.5.13-B Double acting. For valves type G2FM-T and G3FM-T GB-1

The AD actuators are made according to the Scotch Yoke principle, which is characteristic for its high torque when required - at the beginning and end of each operation. This increases safety and reduces the energy consumption.

Characteristics

- · Increased torque where required. The Scotch Yoke actuator gives approx. 50% higher starting and closing torque (0°) compared to the rack and pinion actuator.
- Compact measures. Approx. 30% smaller than rack and pinion actuators.
- Low air consumption. Approx. 30% less than rack and pinion actuators.
- · Low maintenance, long life.
- · Good regulating features. No play in force transmission and low friction because the transmission passes over bearings.
- Favourable force transmission, gives favourable action in the regulation area. This provides lower turning speed when approaching the end positions.
- · The actuators have low weight and small external dimensions for their torque output.

Quality

The actuators are made under strict quality control and comply with all international standard requirements.

The AD actuators are CE-marked according to PED and ATEX.

Simple, robust design and easy assembly according to ISO 5211.

Recommended actuators for G2FM-T/G3FM-T valves				
Valva	Actu	lator		
Valve	DP 5 bar	Max. DP		
DN 100				
DN 125	AD05	AD100		
DN 150				
DN 200	AD100	AD125		
DN 250		AD125		
DN 300	AD125	AD140		
DN 350	ADIZO	AD140		
DN 400	AD140	40160		
DN 450	AD 140	AD 100		
DN 500	40160	AD160		
DN 600		AD210		

Mounting

For mounting and starting up, the instructions delivered with the actuator must be followed carefully.

Technical Data

Materials:	
- Body	aluminium, anodized
- Piston	aluminium alloy
- End Caps	aluminium,
	anodized
- Shaft	steel, AISI 304
	(A2)
- O-rings	NBR (rubber)
- Springs	Pre-compressed
	Cartridges, epoxy
	painted
Actuat. flange	ISO 5211
Air supply	Dry or lubricated
	filtered com-
	pressed air, non
-	aggressive gases
Iemperature	-20 °C to +80 °C
Feeding pressure	3-7 bar continuous
Rotation range	90° ± 5°
Hand wheel (option)	Hand wheel (HW)
	integrated in the
	end cap of the
	actuator is
	optional.

DP - Differential Pressure at valve Sizing at 5 bar control air.

Other relevant data sheets for AD actua-

- tors:
- 2-way valves G2FM-T 2.5.05.01
- 3-way valves G3FM-T 2.6.02, 2.6.03
- Positioners
- 6.6.01, 6.6.02 - Filter regulators 6.8.01 - Controller ER2000 4.6.01 4.7.01
- Sensor PT100
- Pneumatic controller S80 6.7.01

Subject to changes without notice.

Pneumatic actuators type AD and ADHW6.5.13-BDouble acting. For valves type G2FM-T and G3FM-TGB-2

* HW option

Subject to changes without notice.

Pneumatic actuators type AS and ASHW 6.5.14-B Single acting. For valves type G2FM-T and G3FM-T GB-1

(1)

AS

The AS actuators are made according to the Scotch Yoke principle, which is characteristic for its high torque when required - at the beginning and end of each operation. This increases safety and reduces the energy consumption.

Characteristics

- · Increased torque where required. The Scotch Yoke actuator gives approx. 50% higher starting and closing torque (0°) compared to the rack and pinion actuator.
- Compact measures. Approx. 30% smaller than rack and pinion actuators.
- Low air consumption. Approx. 30% less than rack and pinion actuators.
- · Low maintenance, long life.
- · Good regulating features. No play in force transmission and low friction because the transmission passes over bearings.
- · Favourable force transmission, gives favourable action in the regulation area. This provides lower turning speed when approaching the end positions.
- · The actuators have low weight and small external dimensions for their torque output.

Quality

The actuators are made under strict quality control and comply with all international standard requirements.

The AS actuators are CE-marked according to PED and ATEX.

Simple, robust design and easy assembly according to ISO 5211.

Recommended actuators for G2FM-T/G3FM-T valves						
Valva	Actuator					
valve	DP 5 bar	Max. DP				
DN 100	10065	48100				
DN 125	A5005	AS100				
DN 150	AS100	AS125				
DN 200	AS125	AS140				
DN 250	AS125	AS160				
DN 300	AS140	AS160				
DN 350	AS160	AS160				
DN 400	AS160	AS210				
DN 450	AS210	AS210				
DN 500	AS210	-				
DN 600						

Mounting

ASHW (with hand wheel)

For mounting and starting up, the instructions delivered with the actuator must be followed carefully.

Technical Data

Materials:	
- Body	aluminium,
	anodized
- Piston	aluminium alloy
- End Caps	aluminium,
	anodized
- Shaft	steel, AISI 304
	(A2)
- O-rings	NBR (rubber)
- Springs	Pre-compressed
	Cartridges, epoxy
	painted
Actuat. flange	ISO 5211
Air supply	Dry or lubricated
	filtered com-
	pressed air, non
	aggressive gases
Temperature	-20 °C to +80 °C
Feeding pressure	3-7 bar continuous
Rotation range	90° ± 5°
Hand wheel (option)	Hand wheel (HW)
	integrated in the
	end cap of the
	actuator is
	optional.

DP - Differential Pressure at valve Sizing at 5 bar control air.

Other relevant data sheets for AS actuators:

- 2-way valves G2FM-T 2.5.05.01
- 3-way valves G3FM-T 2.6.02, 2.6.03 6.6.01, 6.6.02
- Positioners
- Filter regulators 6.8.01 - Controller ER2000 4.6.01 4.7.01
- Sensor PT100
- Pneumatic controller S80 6.7.01

Subject to changes without notice.

Clorius Controls A/S Kajakvej 4 · DK-2770 Kastrup · Denmark Tel.: +45 77 32 31 30 · Fax: +45 77 32 31 31 E-mail: mail@cloriuscontrols.com Web: www.cloriuscontrols.com

.

* HW option

Subject to changes without notice.

Pneumatic-pneumatic positioners PPL and PPR series

PPL and PPR series are robust control devices that provide dependability in difficult environments.

Characteristics

- · Easy maintenance
- Precise calibration with simple SPAN and ZERO adjustments
- Simple conversion to direct acting or reverse acting
- $\frac{1}{2}$ split range available
- · Rugged aluminium housing with corrosion-resistant coating
- Vibration resistant design
- Stainless steel gauges standard
- · Restricted pilot valve orifice kit for small actuators included

Specifications

	PF	۶L	PPR			
	Linear type (le	ver feedback)	Rotary type (cam feedback)			
	Single	Double	Single	Double		
Input Signal		0.2-1.0 bar	(3-15 psi) 1)			
Supply Air Pressure		Max. 7.0 b	ar (100 psi)			
Standard Stroke	10-80	mm ²⁾	60-1	00° ³⁾		
Pneumatic Connections		Rc ¼ (NPT ¼)			
Ambient Temperature		-20°C	. +70°C			
Pressure Gauge	Stainless Steel					
Output Characteristics	Linear					
Linearity	Within ±	1.0% F.S	Within ±	1.5% F.S		
Sensitivity	Within ±0).2% F.S	Within ±	0.5% F.S		
Hysteresis	Within ±0).5% F.S	Within ±	Within ±1.0% F.S		
Repeatability	Within ±0.5% F.S					
Air Consumption	5 LPM (Sup. 1.4 bar)					
Flow Capacity	80 LPM (Sup. 1.4 bar)					
Body Material	Aluminium Diecast					
Weight	2.9 kg					

PPL (Linear Type)

PPR (Rotary Type)

 $^{1)}$ $^{1\!\!/}_2$ split range can be adjusted.

²⁾ Feedback lever is available for stroke 80-150 mm (PPL).

³⁾ Stroke can be adjusted to 0°-60° or 0°-100° (PPR).

How to order

PP	Actuator Operation	_	Feedback Lever	Pressure Gauge (SUP.OUT)		
----	-----------------------	---	-------------------	--------------------------------	--	--

Description	Code
Actuator Operation:	L : Linear type
	R : Rotary type
Feedback lever:	
 Linear type 	A : Stroke (10-80 mm)
Rotary type	A : Fork lever M6 × 40L B : Fork lever other size on request N : Namur shaft (direct mounting)
Pressure gauge:	0:2 bar (30 psi) 1:6 bar (90 psi) 2:10 bar (150 psi)

	Pilot Valve Orifice		Mounting Bracket
--	------------------------	--	---------------------

Description	Code
Pilot valve Orifice:	S : Standard (actuator volume over 180 cm ³) M: Small Orifice (∅ 1.0 or ∅ 0.7) (actuator volume 90-180 cm ³)
Mounting bracket:	N : None L : DIN / IEC534 (for PPL) R : DIN VDI / VDE3845 (for PPR) F : DHCT bracket 80 × 30

Subject to change without notice.

Pneumatic-pneumatic positioners PPL and PPR series

Dimensions (mm)

Subject to change without notice.

Electro-pneumatic positioners EPL and EPR series

EPL and EPR series are the rugged control devices which stand up to harsh environments and engineered to meet the highest and most demanding control performance that the process industries of today require.

Characteristics

- · Easy maintenance
- Precise calibration with simple SPAN and ZERO adjustments
- Simple conversion to direct acting or reverse acting
- ¹/₂ split range available
- Rugged aluminium housing with corrosion-resistant coating
- Vibration resistant design
- Stainless steel gauges standard
- Restricted pilot valve orifice kit for small actuators included

Options available

- Position transmitter (4-20 mA output signal)
- Two limit switches (open and close) only for EPR
- Certificate for ATEX (Ex) Eex md IIB T5 (05 ATEX 1076X) by NEMKO in conformance with EN 50014:1997, EN 50018:2000 and EN 50028:1987
- Certificate for EMC (K1046 / E04) in conformance with EN 61000-6-2:2001 and EN 61000-6-4:2001 by RWTUV
- Certificate for Ex md IIB T6 (99-1075-Q1), Ex md IIC T6 (2000-1057-Q1) and Ex ia IIB T6 (2000-1056-Q1) by KOSHA

EPL (Linear Type)

EPR (Rotary Type)

Specifications

	EPL Linear type (lever feedback)		EPR			
			Rotary type (o	cam feedback)		
	Single	Double	Single	Double		
Input signal		4-20 mA, 2	24 V DC ¹⁾			
Input resistance		235 ±	:15 Ω			
Supply air pressure		Max. 7.0 ba	ar (100 psi)			
Standard stroke	10-80	mm ²⁾	60-10	00° ³⁾		
Pneumatic connections		Rc ¼ or	NPT ¼			
Electrical connections	G½ or NPT ½					
Protection class	IP66					
Ambient temperature	-20° +70°					
Pressure gauge	Stainless Steel					
Output characteristics		Lin	ear			
Linearity	Within ±1	1.0% F.S.	Within ±	1.5% F.S.		
Sensitivity	Within ±0).2% F.S.	Within ±0).5% F.S.		
Hysteresis	Within ±0).5% F.S.	Within ±	1.0% F.S.		
Repeatability	Within ±0.5% F.S.					
Air consumption	5 LPM (Sup. 1.4 kgf/cm ²)					
Flow capacity	80 LPM (Sup. 1.4 kgf/cm ²)					
Body material		Aluminiur	n Diecast			
Weight		2.9 kg (with a	terminal box)			

¹⁾ $\frac{1}{2}$ split range can be adjusted.

²⁾ Feedback lever is available for strike 80-150 mm (EPL).

³⁾ Stroke can be adjusted to 0-60° or 0-100° (EPR).

Subject to changes without notice.

Electro-pneumatic positioners EPL and EPR series

How to order

EP	Actu Opera	ator	Protection Class	Feedback Lever	Pre G (SU	essure auge P.OUT)	Pilot Valve Orifice	Position Feedback	Mounting Bracket
Description Code			Description		Code				
Actuator ope	eration:	L : Linea R : Rotar	r type y type			Pilot val	ve orifice:	S: Standard (a over 180 cn	ctuator volume
Protection c	lass:	F : Flame I : Intrins W: Weath A : Flame	eproof (Ex md II sic Safely (Exia nerproof to IP66 eproof (Fex md	B T6/Ex md IIC IIB T6) IIB T5 for ATEX	T6) (ξχ)	Positior	feedback: weather-	M : Small orifice (actuator vo N : None O : Position tra	e (∅ 1.0 or ∅ 0.7) Jume 90-180 cm³) nsmitter
Feedback level to be the second secon	ver:	A : Stroke	e (10-80 mm) e (70-150mm)			proof)		(4-20 mA or L : Two SPDT (only for EP	utput signal) limit switches 'R)
Rotary type)	A : Fork I B : Fork I N : Namu	evel M6 × 40L evel other size r Shaft (direct r	on request nounting)		Mountin	ig bracket:	N : None L : DIN/IEC534 R : DIN VDI/VE	l (for EPL) DE3845 (for EPR)
Pressure ga	uge:	1 : 6 bar 2 : 10 ba	(90 psi) r (150 psi)						Ket 00 ~ 00

Dimensions (mm)

Subject to changes without

Pneumatic indicating controllers and transmitters 6.7.01-C Series 80 GB-1

Applications

For the control of temperature and pressure in industrial or process plants. The indicating controller is used for control of liquid, gaseous or vaporous media. The instrument senses the temperature/ pressure of the measured medium directly. displays the operating value, compares the measured variable with the set point and puts out a pneumatic signal in the standard range of 0.2 to 1 bar or 3 to 15 psi. This output pressure actuates the final control element. Four control forms are available: ON-OFF, P, P+I, P+I+D. The units can also be used for remote control of processes operating whether with a pneumatic transmitter (output 0.2-1 bar or 3-15 psi) or as a receiver controller (input 0.2-1 bar, 3-15 psi).

Technical data

Body Cover Degree of protection Mounting Pneumatic connections Supply air pressure Output Proportional action Integral action Derivative action Steady state air consumption Max. air delivery Accuracy Histeresis Non linearity Repeatability Control range Permissible ambient temperature Weight

Die cast aluminium with anti corrosive paint ABS IP55 Wall or panel 1/4" NPT 20±1.5 psi / 1.4 ± 0.1 bar 3-15 psi / 0.2-1 bar Proportional band ∞...200% >0...>10 rep. /min. 0...>5 min. rep Air supply 20 psi / 1,4 bar Air supply 20 psi / 1,4 bar \leq 1% deviation ≤ 0.5% ≤ 0.5% ≤ 0.5% 0...150 °C -20...+ 80 °C ~3 kg

0.13 Nm3/h 2.6 Nm3/h

Options

- · External set point knob
- · Box for tropical conditions
- · Output signal 6 to 30 psi / 0.4 to 2 bar

Subject to changes without notice.

Pneumatic indicating controllers and transmitters 6.7.01-C Series 80 GB-2

Temerature element

SPAN	25°C	30°C	40°C	50°C	60°C	70°C	80°C	100°C	120°C	130°C	150°C	200°C	250°C	300°C	400°C	500°C
A1	250	250	250	200	200	200	200	200	200	200	200	200	200	200	200	200
L1	170	170	170	120	120	120	120	120	120	120	120	120	120	120	120	120
D1	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
A2	250	250	250	200	200	200	200	200	200	200	200	200	200	200	200	200
L2	170	170	170	130	130	120	120	120	120	120	120	120	120	120	120	120
D2	16	16	16	16	16	14	14	14	14	14	14	14	14	14	14	14

Dimensions

Subject to changes without notice.

Pneumatic indicating controllers and transmitters 6.7.01-C Series 80 GB-3

Codification

Code Number												
	Î			4	L	•						
Series 80 Indicating Controllers	▶ 8]										
Control actions												
ON/OFF -		1										
P -		2										
P+I -		3										
P+I+D -		4										
TRANSMITTER -		5										
UNIVERSAL CONTROLLER		6										
Sensor												
Temperature Element for Liquids R11-W23												
Temperature Element for Gasses R12-W23		→ B	3									
Temperature Element for Liquids and Termowell		→ C	;									
Pressure Element		→ □										
3-15 psi Receiver Element		→ □	,									
0.2-1 bar Receiver Element												
Connections												
3/4" GAS M (std.) for temperature Element			►F									
1/2" GAS M for temperature Element			G									
3/4" NPT for temperature Element			►H									
1/2" NPT for temperature Element			▶									
1/2" GAS M for pressure Element			▶ J									
1/2" NPT M for pressure Element			► K									
1/2" GAS M - 1/4" NPT F for pressure Element			► L									
1/2" NPT F for pressure sensor			► N									
14" NPT F with fittings for 4mm pipe size for receiver Element			• 0									
Range and measure unit				► to	•							
Capillary lenght (for temperature Element)						 m						
Antivibrating Internal System							Ρ					
Antivibrating support System							• (ב				
Door Lock with key						 		► F	2			
2" Mounting bracket									► S	\$		
Auto / Manual Switch									_	► T		
Output signal												
3-15 psi											• I	J
6-12 psi											V	V
3-27 psi -											>	(
6-30 psi											۱	1

Subject to changes without notice.

AW 20K-F02CE-H FILTER REGULATOR AW20K

FLOW CHARACTERISTICS

PRESSURE CHARACTERISTICS

Integrated filter and regulator units save space and require less piping.

With the backflow function it incorporates a mechanism to exhaust the air pressure in the outlet side reliably and quickly.

EXAMPLE

When the air supply is cut off and releasing the inlet pressure to the atmosphere, the residual pressure release of the outlet side can be ensured for a safety purpose.

TECHNICAL DATA:

- With backflow function
- Thread type

Port Size

Proof pressure

Relief pressure

■ Set pressure range

Fluid

Pressure gauge port size

Maximum operating pressure

- Port Size
- Float type auto drain
- Pressure gauge

YES G 1/8 1/4Float type auto drain N.C. type-0.1 MPa (AD27) Square embedded type pressure gauge (with limit indicator)

	Material	Color
Body	Zinc die-cast	Platinum Silver
Bonnet	Polyacetal	Black

- 1/4 1/8 Air Ambient and fluid temperature -5 to 60°C 1.5 MPa 1.0 MPa
 - 0.05 to 0.85 MPa Set pressure + 0.05 MPa
- at relief flow rate of 0.1 Nominal filtration rating ■ Drain capacity (cm³) 8 Bowl material Polycarbonate Bowl guard Semi-standard Relieving type Construction 0.32 Mas (kg)

OPTIONS/PART NO.

Float type auto drain ^{1, 2} AD27

1 Minimum operating pressure: N.O. type-0.1 MPa; (AD27)

note

2 Please consult Clorius Controls for details on drain piping to fit NPT or G port sizes

AW 20K-FO2CE-H FILTER REGULATOR AW20K

WORKING PRINCIPLE

When the inlet pressure is higher than the regulating pressure, check valve (2) closes and operates as a normal regulator (Figure 1). When the inlet pressure is shut off and released, check valve (2) opens and the pressure in the diaphragm chamber (1) is release in the inlet side (Figure 2).

This lowers the pressure in diaphragm chamber (1) and the force generated by pressure regulator spring (3) lifts the diaphragm. Valve (4) opens through the stem, and the outlet pressure is released to the inlet side (Figure 2).

AW 20K-FO2CE-H FILTER REGULATOR AW20K

DIMENSIONS

	Standard specifications												
Model	P1	P2	А	B ^(note)	С	D	E	F	G	J	к		
AW20K	1/8	1/8	40	160	73	26	-	M28x1	40	26	5		

	Optional specifications													
Model			Bi	acket mou	nt		With auto drain							
	м	N	Q	R	S	т	U	v	w	Y	z	B ^(note)		
AW20K	30	34	44	5.4	15.4	55	2.3	30	28.5	14	6	177		

Note) The total length of B dimension is the length when the filter regulator knob is unlocked.

AW 20K-FO2CE-H FILTER REGULATOR AW20K

SPECIFIC PRODUCT PRECAUTIONS

MAINTENANCE

WARNING

1. Replace the regulator when the pressure drop becomes 0.1 MPa.

MOUNTING AND ADJUSTING

WARNING

 Set the regulator while verifying the displayed values of the inlet and outlet pressure gauges. Turning the regulator know excessively can cause damage to the internal parts.
 The pressure gauge included with regulators for 0.02 to 0.2

MPa setting is for up to 0.2 MPa use only. Exceeding 0.2 MPa of pressure can damage the gauge.

3. Do not use tools on the pressure regulator knob as this may cause damage. It must be operated manually.

CAUTION

1. Be sure to unlock the knob before adjusting the pressure and lock it after setting the pressure. Failure to follow this procedure can cause damage to the knob and the outlet pressure may fluctuate.

Pull the pressure regulator knob to unlock. (You can visually verify this with the "orange mark" that appears in the gap.)
Push the pressure regulator knob to lock. When the knob is not easily locked, turn it left and right a little and then push it (when the knob is locked, the "orange mark", i.e. the gap will disappear).

2. A knob cover is available to prevent careless operation of the knob. Refer to page 90 for details.

SECTION 8

Y strainers type M-F821A, G-F821C and H-F821F

8.1.11-E

GB-1

Description

The Y strainers are applicable to all types of steam, water, oil and air systems. Their purpose is to protect traps, regulating valves, piping, etc. from dirt which often cause damage and consequently

energy loss in fluid systems. Connections are female screwed or flanged.

Characteristics

- Screen made of stainless steel
- Compact settlement
- Environment-friendly
- Cleaning of screen without disassembling
- Face-to-face dimension according to EN 558-1 series 1
- Flanges drilled according to EN 1092-1 for body material F (H-F821F)
- Flanges drilled according to EN 1092-2 for body material A (M-F821A), C (G-F821C)
- Closing tightness acc. EN 12266-1

Application

Saturated steam, water, oil, air and other compatible fluids.

Installation

Horizontal or vertical downstream installation.

Screens

Т	уре	Mesh (mm)
	DN 15-50	1
M-F821A	DN 65-150	1.25
	DN 200	1.6
0 50040	DN 15-50	1
G-F821C H-F821F	DN 65-80	1.25
111 0211	DN 100-200	1.6

Meshes in 0.6, 0.5, 0.4, 0.32 and 0.2 mm are available on request.

Specifications

Туре	Body material	Nominal pressure PN bar	Nominal diameter DN mm	Max. temperature °C
M-F821A	A: Grey cast iron	16		300
G-F821C	C: Nodular cast iron	25	15-200	350
H-F821F	F: Cast steel	40		400

Subject to changes without notice.

								Type M-F821A , PN 16				Type G-F821C , PN 25				25	Type H-F821F , PN 40					
DN mm	L mm	H mm	H1 mm	G mm	С mm	B mm	Kv m³/h	D mm	d mm	K mm	n x do mm	Weight kg	D mm	d mm	K mm	n x do mm	Weight kg	D mm	d mm	K mm	n x do mm	Weight kg
15	130	90	135	3⁄8	23	56	5.7	95	46	65	4x14	2.6	95	46	65	4x14	2.6	95	45	65	4x14	2.7
20	150	100	150	3⁄8	28	68	10.4	105	56	75	4x14	3	105	56	75	4x14	3	105	58	75	4x14	3.6
25	160	115	180	3⁄4	36	82	16.4	115	65	85	4x14	4.3	115	65	85	4x14	4.3	115	68	85	4x14	4.5
32	180	135	215	3⁄4	42	98	27.3	140	76	100	4x19	6.8	140	76	100	4x19	6.8	140	78	100	4x18	6.3
40	200	150	240	1	50	114	42	150	84	110	4x19	8.8	150	84	110	4x19	9	150	88	110	4x18	8.7
50	230	160	250	1	61.5	119	64.7	165	99	125	4x19	11	165	99	125	4x19	11	165	102	125	4x18	11
65	290	180	285	1	78.5	134	98	185	118	145	4x19	14.6	185	118	145	8x19	16.8	185	122	145	8x18	18.5
80	310	215	330	1	89.5	149	149	200	132	160	8x19	18.6	200	132	160	8x19	19.5	200	138	160	8x18	23.5
100	350	235	365	11⁄2	109.5	169	234	220	156	180	8x19	27	235	156	190	8x23	29.6	235	162	190	8x22	33
125	400	280	425	11⁄2	137.5	199	376	250	184	210	8x19	38.5	270	184	220	8x28	42.5	270	188	220	8x26	54
150	480	320	480	11⁄2	160	224	454	285	211	240	8x23	54.5	300	211	250	8x28	56	300	218	250	8x26	75
200	600	405	610	11⁄2	210	284	853	340	266	295	12x23	110	360	274	310	12x28	110	375	285	320	12x30	137

Subject to changes without notice.

Clorius Controls A/S

Sensor Pockets for Clorius V-thermostats

Application

Sensor pockets of stainless steel can be supplied to all Clorius self-acting thermostats with rod sensors. They are used where it is impossible to empty the system or the tank.

Use of sensor pockets imply delay of heat transfer to the rod sensors and thus a longer reaction time for the controllers. This is to some extent counteracted by filling up the sensor pockets with paste or oil.

Mounting

The installation site for the sensor pocket is arbitrary when paste is applied. When using oil the sensor pocket must point somewhat downwards.

Material

High alloy stainless steel. Werkstoff No. 1.4436.

For	Clorius			150 7/1		
thermostat type	product number	ØD	L	h	s	(tapered)
V 2.05	3290069	25	215	9	36	R 1
V 4.03	3290182	20	215	10	50	R 1¼
V 4.05	3290077	25	390	10	50	R 1¼
V 4.10	3290085	34	512	10	50	R 1¼
V 8.09	3290093	34	740	12	80	R 2½
V 8.18	3290204	38	805	12	80	R 21/2

Kølestykker

Anvendelse

Kølestykker anvendes i forbindelse med reguleringsventiler, termostater og ventilmotorer for beskyttelse af henholdsvistermostatens/ventilmotorens pakdåse. Ved ventiltemperaturer over 170°C anvendes kølestykker af typen KS installeret med tilslutning nedad. Valg af type sker efter nedenstående retningslinier:

Type KS-4

Kølestykke, som beskytter motorens/ termostatens pakdåse. Anvendes ved ventiltemperaturer mellem 170°C og 250°C. For højere temperaturer se hhv. KS-5 og KS-6.

Type KS-5

Kølestykke med indbygget bælgtætning, erstatter termostatens pakdåse. Obligatorisk ved ventiltemperaturer mellem 250°C og 350°C.

Type KS-6

Kølestykke med indbygget bælgtætning, erstatter ventilmotorens pakdåse. Obligatorisk ved ventiltemperaturer mellem 250°C og 350°C.

Håndforstiller

Håndforstilleren har en indbygget termostatpakdåse. Til tætning og manuel betjening af ventilerne, når en aktuator ikke er monteret, som f.eks. i byggeperioder (max. 170°C).

Cooling Units

Application

The cooling units are used in connection with control valves, thermostats and valve motors to protect the stuffing box. At valve temperatures above 170°C a cooling unit of type KS connected downwards should be applied of type according to the following:

Type KS-4

Cooling unit protecting the stuffing box of the motor/thermostat. To be applied at valve temperatures between 170°C and 250°C. For higher temperatures please see type KS-5 and type KS-6.

Type KS-5

Cooling unit with a built-in bellow gland, replacing the stuffing box of the thermostat. To be applied at valve temperatures between 250°C and 350°C.

Type KS-6

Cooling unit with a built-in bellow gland, replacing the stuffing box of the valve motor. To be applied at valve temperatures between 250°C and 350°C.

Manual Adjusting Device

The device has a built-in thermostat stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

SECTION 9

AVM234S: 2500N Actuator with analog SUT positioner

Areas of use

For use with two or three-way. For controllers with continuous output (0...10 V or 4...20 mA) or switching output (2-point or 3-point control).

How energy efficiency is improved

Automatic adaptation to valve, precision control and high energy efficiency with minimal operating noise.

Features

- Pushing force of at least 2500 N
- Stepping motor with SUT (Superior Universal Technology) electronic control unit and electronic load-dependent cut-off
- Automatic detection of control signal applied (continuous or switching), indicated by two LEDs
- The type of characteristic (linear, quadratic or equal-percentage) can be set on the actuator
- Automatically adapts to valve stroke between 8 and 49 mm; captive even in the event of a power failure •
- Direction of travel can be selected via screw terminals when making electrical connection or remotely •
- Coding switches for selecting the characteristic and the running time (2, 4 or 6 s/mm) •
- Lever for external manual adjustment, with motor cut-off, and for triggering a re-initialisation
- Easy assembly with valve; spindle is connected automatically when control voltage is applied
- The availability of numerous adaptors enables the actuator to be fitted to third-party valves

Technical description

- Power supply 230 V with modules or direct connection for 24 V~ or 24 V=; continuous activation • also permissible at 230 V
- Two-part housing made of fire-retardant yellow plastic and seals to IP66 •
- Maintenance-free gearbox of sintered steel, gearbox plate of steel •
- Patented actuator-valve coupling •
- Mounting column made of stainless steel; mounting bracket (for fitting the valve) of cast light alloy .
- Electrical connections (max. 2.5 mm²) with screw terminals
- Three pre-scored cable inlets for M20x1.5 (2x) and M16x1.5 •
- Installation position: vertically upright to horizontal, but not upside down

Dimension drawing

Y07552

Technical data

Туре	Run t s/m	time Im	Stroke mm	Pushing force N	Power supply ¹⁾	Weight kg
AVM 234S K002	2/4	/ 6	1440	2500	24 V~/=	4.1
Positioner: 1)						
Control signal 1		010 V,	Ri > 100 kΩ	Starting point	Uo	0 or 10 V
Control signal 2		420 m/	A, Ri = 50 Ω	Control span	١U	10 V
Position feedback s	signal	010 V,	load > 2.5 k Ω	Switching range	ge X _{sh}	300 mV
Power supply	24 V~	± 20%, 5	060 Hz	Degree of prot	tection	IP 66 (EN 60529)
with accessories	24 V= 230 V~	± 15% ± 15%		Protection clas	SS	III (IEC 60730)
				Response time	e for 3-point	200 ms
Power consumption	า	10 W	18 VA ²⁾	-		
Stroke		849 m	m	Wiring diagram	n	A10357
Max. temperature of	medium	130 °C 3)	Dimension dra	awing	M10356
Permitted ambient te	emperature	-1055	°C	Fitting instruct	ions	99.70.01
Permitted ambient humidity		< 95% rh without condensation		Material declaration		MD 51.377

1) Also for 2-point or 3-point depending on the connection for 24 V~

2)

Besign the transformers for this value, otherwise functional faults may occur. If the temperature of the medium is higher (from 130 °C to 240 °C), an adaptor is required (see accessories) 3)

CE conformity

EMC Directive 2004/108/EC EN 61000-6-2 *) EN 61000-6-4

Low-Voltage Directive 2006/95/EC EN 60730-1 EN 60730-2-14 Over-voltage category III Degree of pollution III

Accessories

Туре	Description
1-0152285	Temperature adaptor for media temperature > 130 °C 240 °C
1-0152287	Potentiometer 1000 Ω , 1 W, 24 V; installation as per MV 505894
1-0152289	Auxiliary change-over contacts (2 pcs. each) 12250 V Infinitely variable, min. 100 mA and 12 V, additional load 6(2) A, MV 505866
1-0152281	230V Module, plug-in type , for 2-/3-point and continuous activation, additional power 2 VA 230 V \pm 15% power supply, MV 505901
	4-20mA Position feedback signal, for 24VAC/DC, output load resistor max. 600 ohm
	Cable gland M20×1.5
	Cable gland M16×1.5

GB Product data sheet

AVM321/AVM322: 1000N Actuator for 2-point or 3-point control

Areas of use

For actuation of 2- and 3-way valves. For controllers with a switching output (2-point or 3-point control)

Improving energy efficiency

Automatic adaptation to valve, optimal operator convenience, precision control and high energy efficiency with minimal operating noise.

Features

- Synchronous motor with electronic control unit and load-dependent cut-off
- Direction of operation and positioning time can be set using coding switches
- Crank handle for external manual adjustment with motor cut-off
- Very low operating noise
- Simple assembly with valve; spindle is automatically connected after nominal voltage is applied
- Electrical parallel operation of 5 actuators

Technical description

- Power supply 24 V~/= or 230 V~
- Three-piece housing of flame retardant yellow/black plastic and seals with degree of protection IP54
- Maintenance-free gearbox made of plastic, threaded spindle and gearbox base-plates made of steel
- Patented drive-valve coupling
- Mounting column made of aluminium
- Fixing bracket made of cast light alloy for the valve fitting with 20 mm and made of plastic for the valve fitting with 10 mm stroke
- Electrical connections (max. 1.5 mm²) with screw terminals
- Two break-out cable inlets for metric screw fitting made of plastic M20×1.5
- Fitting position, vertically upright to horizontal, not hanging

Products

Туре	Positioning time (s/mm)	Nominal stroke (mm)	Nominal voltage (V)
AVM321K001	12 (6)	10	230 V~
AVM321K002*)	12 (6)	10	24 V~/=
AVM322K001	6 (12)	20	230 V~
AVM322K002*)	6 (12)	20	24 V~/=

*) CSA-certified actuators on request (only for devices with nominal voltage 24 V~/=)

Dimension drawing

99.70.05-B

Clorius Controls A/S • Kajakvej 4 • DK-2770 Kastrup • Denmark • Tel. +45 7732 3130

Technical data

Power supply		
Operating voltage		
24 V~	±20%, 5060	Hz
24 V=	-10%+20%	
230 V~	±15%	
Power consumption (at nominal voltage, with movement)		
AVM * K001	< 2.0 W	< 3.0 VA
AVM * K002	< 2.4 W	< 4.0 VA

Dimensions W x H x D (mm)	AVM321: 60x187x88
	AVM 322: 160x241x88
Veight (kg)	AVM321: 1.5

Standards and directives

Degree of protection	IP 54 (EN 60529)
Protection class	II EN60730
	III EN60730

Parameters

Nominal force ¹⁾	1000 N
Operating noise ²⁾ (at nominal force)	< 30 dB(A)
Response time	Approx. 200 ms
Max. media temperature ³⁾	0100 °C

Additional information

Fitting instructions	99.70.03
Declaration on materials and the environment	MD 51.374
Declaration of incorporation	P100012470
Manual & electrical connection dia- gram	99.70.05.01

Admissible ambient conditions

Operating temperature	-1055 °C
Storage and transport temperature	-4080 °C
Humidity	585% rh
	No condensation

1) Actuating power 1000 N under nominal conditions (24 V or 230 V, 25 °C ambient temperature, 50 Hz). With boundary conditions (19.2 V~ / 28.8 V~ / 21.6 V= / 28.8 V=, -10 °C / 55 °C, 60 Hz) and positioning time, the actuating tensile force is minimised to 800 N

2) Operating noise with the slowest positioning time, test $\,$ distance 1m $\,$

3) Use the appropriate accessory when the temperature of the medium is > 100 °C (temperature adaptor).

Power consumption at nominal voltage

Туре	Posi- tioning time (s/mm)	Status	Active power P (W)	Apparent power S (VA)
AVM * K001	6 (12)	Standstill*)	< 0,35	
		Sizing		≥ 5,0
	12 (6)	Operation	< 2,4	< 4,0
AVM * K002	6 (12)	Standstill*)	< 0,3	
		Sizing		≥ 4,0
	12 (6)	Operation	< 2,0	< 3,0

*) Standstill = actuator in the end position, voltage applied to terminal 1 or 2, motor switched off.

CE conformity

EMC Directive 2004/108/EC
EN 61000-6-1
EN 61000-6-2
EN 61000-6-3
EN 61000-6-4
Low-voltage Directive 2006/95/EC
EN 60730-1
EN 60730-2-14
Over-voltage category III
Degree of contamination II
Maximum altitude. 2000 m
Machinery Directive 2006/42/EC in accordance with Annex II B
EN 12100

Accessories

Туре	Description
1-0152285	Temperature adaptor for media temperature > 100 °C 240 °C
	Cable glands M20×1.5

GB Product Data Sheet

AVM321S/AVM322S: 1000N Actuator with analog SUT positioner

Areas of use

For actuation of 2- and 3-way valves. For controllers with constant output (0...10 V / 4...20 mA) or switching output (2-point or 3-point control)

Improving energy efficiency

Automatic adaptation to valve, optimal operator convenience, precision control and high energy efficiency with minimal operating noise.

Features

- BLDC motor (brushless DC) with electronic control unit SUT (Superior Universal Technology) of the third generation and electronic load-dependent cut-off
- Automatic recognition of applied control signal (constant or switched), operating display with bicoloured LED
- Independent adaptation to the stroke of the valve between 10 and 20 mm
- Very low operating noise
- With the built-in absolute distance measurement system, the position is always maintained in case of power failure
- The direction of operation, characteristic (linear / equal percentage), positioning time and control signal
 - (voltage/current) can be adjusted with coding switches
- Integrated forced operation can be set with coding switches (with selectable direction of operation)
- Easy re-initialisation using a coding switch
- Crank handle for external manual adjustment with motor cut-off
- Simple assembly with valve; spindle is automatically connected after control voltage is applied
- Electrical parallel operation of 5 actuators
- · Parameterisation option available through bus interface

Technical description

- Power supply 24 V~ or 24 V=
- Three-piece housing of flame retardant yellow/black plastic and seals with degree of protection IP54
- Maintenance-free gearbox made of plastic; threaded spindle and gearbox base-plates made of steel
- Patented drive-valve coupling
- Mounting column made of aluminium
- Fixing bracket made of cast light alloy for the valve fitting with 20 mm stroke and made of plastic for the valve fitting with 8 mm stroke
- Electrical connections (max. 1.5 mm²) with screw terminals
- Two break-out cable inlets for metric screw fittings made of plastic M20×1.5
- Fitting position, vertically upright to horizontal, not hanging
- Nominal thrust 1000 N²

Products

Туре	Positioning time (s/mm)	Nominal stroke (mm)
AVM321SK001*)	12 (4)	10
AVM322SK001*)	6 (4)	20

*) CSA-certified actuators on request

Dimension drawing

99.70.06-B

Technical data

Power supply		
Operating voltage	24 V~	±20%, 5060 Hz
	24 V=	-10%+20%
with accessory module	230 V~	±15%
Power consumption (at nominal voltage, with mo	vement)	< 1.7 W, < 3.5 VA

Admissible ambient conditions	
Operating temperature	-1055 °C
Storage and transport temperature	-4080 °C
Humidity	585% rh
	No condensation

Parameters

Nominal force ¹⁾	1000 N
Operating noise ²⁾ (at nominal force)	< 30 dB(A)
Response time	> 200 ms
Media temperature ³⁾	0100 °C
Nominal voltage	24 V~/=
Characteristic	Linear / equal percentage
Positioner ⁴⁾	
Control signal y	0…10 V, R _i ≥ 50 kΩ
Control signal y	$420 \text{ mA}, \text{ R}_{i} \leq 50 \Omega$
Positional feedback signal y ₀	0…10 V, load ≥ 5 kΩ
Starting point U ₀	0 or 10 V
Starting point I ₀	4 or 20 mA
Control span ∆U	10 V
Hysteresis Xsh	160 mV
Control span ∆l	16 mA
Hysteresis Xsh	0.22 mA

Dimensions W x H x D (mm)	AVM321S 160x187x88		
	AVM322S 160x241x88		
Degree of protection	IP 54 (EN 60529)		
Weight (kg) AVM321S	1.5		
AVM322S	1.6		

Standards and directives

Protection class III (E	N 60730-1), EN60730-2-14
-------------------------	--------------------------

Additional information

Installation

Fitting instructions	99.70.03
Declaration on materials and the environment	MD 51.375
Declaration of incorporation	P100012470
Manual & connection diagram	99.70.06.01

1) Actuating power 1000 N under nominal conditions (24 V, 25 $^\circ\text{C}$ ambient temperature, 50 Hz).

With boundary conditions (19.2 V~ / 28.8 V~ / 21.6 V= / 28.8 V=, -10 °C / 55 °C, 60 Hz) and positioning time, the actuating tensile force is minimised to 800 N 2) Noise level with the slowest positioning time, test distance 1m

3) Use the appropriate accessory when the temperature of the medium is > 100 °C (temperature adaptor).

4) Also for 2- or 3-point, depending on type of connection

Power consumption at nominal voltage

Туре	Posi- tioning time (s/mm)	Status	Active power P (W)	Apparent power S (VA)
AVM321S	12 / (4)	Operation	< 1.7	< 3.5
AVM322S	6 / (4)	Standstill *	< 0.45	
		Sizing		≥ 4.5

*) Standstill = actuator in the end position, voltage applied to terminal 1 or 2, motor switched off.

CE Conformity

EMC Directive 2004/108/EC
EN 61000-6-1
EN 61000-6-2
EN 61000-6-3
EN 61000-6-4
Low-voltage Directive 2006/95/EC
EN 60730-1
EN 60730-2-14
Over-voltage category III
Degree of contamination II
Maximum altitude. 2000 m
Machinery Directive 2006/42/EC in accordance with
Annex II B
EN 12100

Accessories

Туре	Description
1-0152285	Temperature adaptor for media temperature > 100 °C 240 °C
1-0152313*	420 mA feedback module
1-0152315*	Constant 230 V module
	Cable glands M20×1.5

*) Dimension drawing or connection diagram is available under the same number

GB Product Data Sheet

AVF234S: 2000N Actuator with analog SUT positioner and spring return

Areas of use

For use with two or three-way. For controllers with continuous output (0...10 V or 4...20 mA) or switching output (2-point or 3-point control). For applications where a fail-safe function is required.

How energy efficiency is improved

Automatic adaptation to valve, precision control and high energy efficiency with minimal operating noise.

Features

- Actuator with spring return action and pushing force of at least 2000 N with actuator extending or retracting spindle versions.
- Stepping motor with SUT (Superior Universal Technology) electronic control unit and electronic load-dependent cut-off
- · Automatic detection of control signal applied (continuous or switching), indicated by two LEDs
- The type of characteristic (linear, quadratic or equal-percentage) can be set on the actuator
- Automatically adapts to valve stroke between 8 and 49 mm; captive even in the event of a power failure
- Direction of travel can be selected via screw terminals when making electrical connection or remotely
- Coding switches for selecting the characteristic and the running time (2, 4 or 6 s/mm)
- Lever for external manual adjustment, with motor cut-off, and for triggering a re-initialisation
- Easy assembly with valve; spindle is connected automatically when control voltage is applied
- The availability of numerous adaptors enables the actuator to be fitted to third-party valves

Technical description

- Power supply 230 V with modules or direct connection for 24 V~ or 24 V=; continuous activation also permissible at 230 V
- Two-part housing made of fire-retardant yellow plastic and seals to IP66
- Maintenance-free gearbox of sintered steel, gearbox plate of steel
- Patented actuator-valve coupling
- Spring assembly in stainless steel. Mounting column made of stainless steel; mounting bracket (for fitting the valve) of cast light alloy
- Electrical connections (max. 2.5 mm²) with screw terminals
- Three pre-scored cable inlets for M20×1.5 (2×) and M16×1.5
- · Installation position: vertically upright to horizontal, but not upside down

Туре	Positioning time (s/mm)	Nominal stroke (mm)
AVF234SK008 Actuator spindle normally retracted	2/4/6	49

Dimension drawing

Technical data

Turne	Dum	41ma a	Ctualia	Duching	Dawar	Mainht
туре	Kun s/r	nm	mm	force	supply ¹⁾	ka
				Ν		5
AVF 234S K008	2/4	4/6	1449	2000	24 V~/=	5.6
AVF 234S K009						
Positioner: 1)						
Control signal 1		010 V	, Ri > 100 kΩ	Starting point	Uo	0 or 10 V
Control signal 2		420 m	iA, Ri = 50 Ω	Control span 2	۵U	10 V
Position feedback	signal	010 V	, load > 2.5 k Ω	Switching rang	ge X _{Sh}	300 mV
		(Optior	nal: 4-20mA)			
Power supply	24 V~	± 20%,	5060 Hz	Degree of prot	tection	IP 66 (EN 60529)
	24 V=	± 15%		Protection clas	SS	III (IEC 60730)
with accessories	230 V~	± 15%				
				Response time	e for 3-point	200 ms
Power consumption	า	10 W	18 VA ²⁾			
Stroke		849 m	nm	Manual and w	iring diagram	99.70.02.02
Number of spring returns		>40.00	0			
Spring return time 3)		1530	S			
Max. temperature of medium		130 °C '	4)	Dimension dra	awing	M10356
Permitted ambient temperature		-1055	°C	Fitting instruct	ions	99.70.02
Permitted ambient	humidity	< 95% r	h	Material decla	ration	MD 51.377
		without	condensation			

Also for 2-point or 3-point depending on the connection for 24 V~ 1)

2) 3)

Design the transformers for this value, otherwise functional faults may occur. The return time corresponds to a stroke of 14 to 40mm and does not depend on the set run time If the temperature of the medium is higher (from 130 °C to 240 °C), an adaptor is required (see accessories)

4)

CE conformity EMC Directive 2004/108/EC EN 61000-6-2 *) EN 61000-6-4

Low-Voltage Directive 2006/95/EC EN 60730-1 EN 60730-2-14 Over-voltage category III Degree of pollution III

Accessories

Туре	Description
1-0152285	Temperature adaptor for media temperature > 130 °C 240 °C
1-0152287	Potentiometer 1000 Ω , 1 W, 24 V; installation as per MV 505894
1-0152289	Auxiliary change-over contacts (2 pcs. each) 12250 V Infinitely variable, min. 100 mA and 12 V, additional load 6(2) A, MV 505866
1-0152281	230V Module, plug-in type , for 2-/3-point and continuous activation, additional power 2 VA 230 V \pm 15% power supply, MV 505901
	4-20mA Position feedback signal, for 24VAC/DC, output load resistor max. 600 ohm
	Cable gland M20×1.5
	Cable gland M16×1.5

SECTION 10

Advantages

· Saving of energy and water

Less transmission loss and limited waste of heat and water through drain. Besides, a better utilization of the capacity of the hot water tank is obtained.

Comfort

Constant temperature. Even at variable consumption.

• Safety The bath water cannot scald.

• Minimum maintenance The Evertemper System is robust and eliminates scale.

The Evertemper System

It consists of a Clorius 3-way valve with thermostat type V and a mixing tank in which water from the hot water tank is – centrally – mixed with cold water and return water from the circulation of the system. Irrespective of the drain-off quantity and the temperature of the hot water tank the bath water always has the desired temperature.

Evertemper can be mounted in two ways:

System A

The 3-way valve distributes cold water As the valve – in cold water – is less exposed to scale deposits and heat strains, this system is preferred provided that large quantities of hot water are not being drained off directly from the hot water tank for other uses. Balancing valves should be mounted on both outlets of the 3-way valve in order to give equal resistance in both circuits to the mixing tank.

System B

Hot and cold water is mixed in the 3-way valve

This system is used where parallel with warmed water for bathing – hot water is also necessary, e.g. for use in the kitchen. In system B the valve is both exposed to heat strains and scale as it at the same time is exposed to cold and hot water. Balancing valves should be mounted on both inlets to the mixing valve to secure equal resistance in both circuits.

For mixing of cold water and return water a lateral Y-piece must be used. Please see drawing.

Subject to changes without notice.

Evertemper System for Hot Water Control

Sizing of System

The above diagram can be used to size the components of the Evertemper System. If the desired pressure drop over the 3-way valve differs from 0.5 bar please refer to our datasheet for 3-way valves no. 2.2.07.

For both system A and B, it is very important that valves are correctly dimensioned and also that the circulating pumps (P) are suitable sized to circulate at least 20% of the flow rate for which the plant is dimensioned.

Mixing tank

Should you manufacture the mixing tank yourselves, it is important to keep the dimensions stated above.

Example:

A plant in accordance to system "A" consists of 18 showers with a capacity of 0.2 l/sec, in total 12960 l/h. This flow rate is found on the left side of the above diagram from where a horizontal line is followed until it intersects with the line "Distribution Valve System A". This intersection is within the vertical grey area marked 40 L3S/M3F and below this the other components and their dimensions are shown. The Evertemper System in this example will consist of one 40 mm valve type L3S/M3F, one thermostat type V4.10 and one mixing tank. The minimum flow rate circulated by the pump is 2590 l/h.

10.4.01-D

GB-2

Subject to changes without notice.

PRODUCT CATALOGUE 2016

Reliable Industrial Controls Since 1902